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Abstract

The explosive growth of genome sequencing has yielded complete genome sequences of
several closely related bacterial species, and efforts to sequence entire populations are
underway. Through genome comparison we expect to gain insight into the selective
constraints shaping the evolution of these organisms. Genome comparison also pro-
vides a framework for characterizing the rates and patterns of large-scale evolutionary
events such as genomic rearrangement and lateral gene transfer which to date are poorly
understood.

This document describes the development of computational methods for the iden-
tification and classification of homologous genomic sequence among a set of sequenced
genomes. The homology analysis consists of four basic procedures : (1) rapid identifica-
tion of segmental homology from raw genomic sequence, (2) distinguishing orthologous
and xenologous segments from paralogous segments, (3) global multiple alignment of
orthologous and xenologous segments, and (4) discrimination between orthology and
xenology.

The success of the analysis procedure rests on previously established models of se-
quence and genome evolution. Genome sequences typically comprise several million or
billion nucleotides, thus the scale of the data analysis poses a challenge. Several heuris-
tic approaches for coping with large datasets have been investigated and are reported
herein.

Application of the analytic techniques to the sequenced genomes of Enteric bacteria

reveals striking patterns of genome evolution. Rates of genomic rearrangement appear



ii
to be highly variable in the enteric bacteria and may be linked to adaptive evolution.
The analysis reveals substantial evidence for widespread homologous recombination in

populations of enteric bacteria, indicating that these microbes cannot be considered as

clonal populations.
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Chapter 1

Introduction

Since Zuckerkandl and Pauling first described molecules as documents of evolutionary
history (Zuckerkandl and Pauling, 1965), our ability to transcode DNA sequence into
computer-readable information has undergone several dramatic revolutions. Current
genome sequencing technology (Margulies et al., 2005, Shendure et al., 2005) provides
low-cost sequencing for microbial genomes and populations. The vast quantity of ge-
nomic information available presents us with the tantalizing possibility of using molecular
information to reconstruct the evolutionary history that has led to the current state of
our biosphere.

Along the path to reconstructing evolutionary history we inevitably discover new
facets of the biology of modern organisms. The indelible mark of evolution lies on
every organism within and around us, and that mark can be exploited to draw inference
on everything from population dynamics, to mating behavior, disease, the organism’s
biochemistry, and the organism’s environment. Grounded in an understanding of modern
biology and evolutionary history, we may begin to make similar inferences on the biology
of organisms that lived many thousands or millions of years ago.

Given our newfound ability to read the documents of evolutionary history, we now
face the challenge of comprehending the story unfolding before us. We must ask ourselves

at what scale should we attempt to understand the process of evolution. Many previous



studies have elucidated the evolutionary history of one or a few individual genes, which
are taken as representative of the organism. When taken out of the context of the
genomes in which they reside, the inferred evolutionary history of individual genes may
show mysterious patterns that are difficult to interpret. For example, when interacting
proteins co-evolve, distinct genes will have intertwined evolution but such an effect may
not be observed by considering only one of the two genes. Thus to study organismal
evolution it seems natural to study the evolution of genomes as a whole. Of course,
organisms live in the context of an environment whose conditions often have a profound
impact on the biology of the organism. Thus, one might also ask whether it makes sense
to study genome evolution in isolation of a corresponding study on the evolution of the
environment.

Recent comparative studies of bacterial genomes have demonstrated that members of
the same microbial species may harbor as much as 10-20% unique genomic content not
present in other isolates of the same species (Perna et al., 2001, Tettelin et al., 2005). In
some cases the novel genomic content appears to be recently acquired and specific to the
environment in which the particular bacterium lives (Sullivan et al., 2006). Furthermore,
bacteriophage appear to play a fundamental role in introducing and maintaining genetic
diversity within bacteria (Edwards and Rohwer, 2005). If genetic content is in fact
frequently environment- and niche-specific, a study of individual microbial genomes in
isolation would fail to reveal the fundamental role that environment-specific phage have
played in evolution.

Inference of evolutionary history through DNA sequence is a startlingly complex
task. Given two or more DNA sequences that presumably descended from a common

ancestor, we would like to identify the most likely ancestral sequence, and a series



of events that transformed the ancestor into the presently observed sequences. Our
inferences are predicated on some model of molecular change, i.e. a set of allowable
mutation operations that can be used to transform one sequence into another. Given
a set of mutation operations, our model then must characterize the frequency with
which each type of mutation might occur. Typically, we are uncertain what model best
describes the molecular evolution of any given DNA sequence, thus we must further
assume that our model is wrong. Even if the chosen model fails to capture the true
nature of the evolutionary process, it may nevertheless prove to be a useful model if it
can make reasonably accurate predictions when faced with data whose evolution violates

model assumptions.

A model of genome evolution

As genomes evolve, they undergo large scale evolutionary processes not readily observed
among short gene sequences. Recombination causes frequent genome rearrangements,
horizontal transfer introduces new sequences into bacterial chromosomes, and deletions
remove segments of the genome. Given a set of genomes to compare, conserved regions
may exist among some or all taxa, and their ordering may be shuffled among taxa.
Traditional models of sequence evolution incorporate nucleotide substitution, and
insertion and deletion of small subsequences (indels). To account for genome-scale evo-
lution, we must extend the model to include rearrangement events such as inversion,
translocation, and chromosomal fusion and fission. When combined with differential
gene loss, segmental duplication can also create the effect of apparent genome rear-
rangement. Finally the model must incorporate some notion of gene acquisition.

Given our model of genome evolution and a data set of genome sequences, we would



ideally be able to derive the most likely history of mutation events under that model.
Unfortunately, the complex model structure and the scale of genomic datasets preclude
direct analysis. In order to draw computationally tractable inference on genome evolu-
tion, we subdivide the analytic procedure into the separate steps of genome alignment
and evolutionary analysis. Subsequent chapters of this document describe methods for
genome alignment and evolutionary analysis that have been developed.

The genome alignment process identifies regions of sequence that are likely to be
orthologous. That is, an alignment identifies nucleotides which are derived from the same
nucleotide in the common ancestor of one or more extant genomes. When homologous
genomic segments have been acquired via lateral gene transfer, such segments are said
to be zenologous because the common ancestor of those segments is different than the
common ancestor for the clonally reproduced portion of the genome.

The genome alignment techniques described herein do not distinguish between xenol-
ogous and orthologous segments. In order to distinguish such segments, we analyze the
genome alignment to identify regions whose molecular evolution is best explained by a
history that includes cross-species lateral gene transfer or intraspecific recombination.

We apply our genome alignment methods to a large group of enteric bacteria. The
resulting genome alignments provide a foundation for investigations into the evolution
of these bacteria. Specifically, we investigate rates of intraspecific recombination and

gene acquisition both within species and across species.



1.1 An overview of the following chapters

The following chapters describe new methods we have developed to address the prob-
lem of genome alignment, and also document comparative analyses of enteric bacteria
enabled by the computed genome alignments. Specifically, Chapter 2 discusses previ-
ous work related to genome alignment, statistical analysis of molecular evolution, and
analysis of genome evolution. Chapter 3 describes an efficient technique for identifying
local-multiple alignments which can subsequently be used as genome alignment anchors.
The subsequent chapter describes an efficient approach to alignment of genomic DNA
conserved among a group of closely-related organisms. Chapter 5 describes an extension
of the genome alignment technique presented in Chapter 4 to handle organisms which
have variable genomic mutation rates and have gained or lost substantial amounts of
genetic material. We then scrutinize the accuracy of the described genome alignment
methods in Chapter 6, drawing comparison to other state-of-the-art methods. Chapter 7
documents a technique for partitioning genome alignments into segments with consistent
phylogenetic signal, i.e. distinguishing orthologous segments from xenologous segments.
Chapter 8 describes an analysis of gene gain and loss patterns among a large group
of enteric bacteria, based on genome alignments computed using our newly developed
methods. Finally, Chapter 9 discusses problems with current approaches to genome
alignment and proposes a Bayesian model of genome evolution for which alignments and

evolutionary histories could be jointly estimated.



1.1.1 Specific contributions of this thesis

e A computational method for efficient match filtration and identification of local-
multiple alignments, supporting rapid homology detection in large genome se-

quences

e A computational method for multiple genome alignment and comparison that iden-

tify orthologous and xenologous sequence more accurately than previous methods

e Simulation-based methods to characterize the accuracy of genome alignment algo-

rithms

e An analysis of Enterobacteria to identify functional categories of genes that tend

to be exceptionally well-conserved throughout evolution

e An analysis of E. coli populations to identify highly variable regions and discovery

of an association among genomic variability and annotated functional non-coding

RNA.

e A description of a Bayesian model of genome evolution that captures the major

patterns of mutation in the Enterobacteriacae.



Chapter 2

Related work

Evolutionary models of nucleotide substitution describe rates and patterns of substitu-
tion between a pair of sequences. The simplest model, referred to as the Jukes-Cantor
model, asserts that each nucleotide in the sequence has an equal probability of mutation
per unit time, and that when it mutates, it becomes one of the other three nucleotides
with equal probability (Jukes and Cantor, 1969). Similar models increase in flexibility
and parameterization up to the general reversible model, which uses six parameters to
specify the probability of mutation between any pair of nucleotides per unit time (Felsen-
stein, 2004). Such models are time-reversible, in the sense that if we have nucleotide ¢
at one end of a branch and nucleotide ;7 at the other, the probability of changing from
i to j, P(i — j), is equal to that for changing from j to i, P(j — i), assuming uniform
background nucleotide frequencies. When P(i — j) and P(j — i) are unequal, the
model is not reversible and it becomes easier to calculate the position of the root on the
tree. The most general non-reversible model specifies probabilities for all 12 possible

nucleotide substitutions (Felsenstein, 2004).



2.0.2 Sequence alignment

The basic evolutionary models give rise to scoring schemes for the vast majority of
sequence alignment methods. These sequence alignment methods combine a substitu-
tion matrix composed of log-likelihood estimates of nucleotide substitution probabili-
ties with an empirically derived penalty for introducing gaps to ultimately arrive at a
scoring scheme for alignments with gaps. Early sequence alignment algorithms such
as Needleman-Wunsch calculate the highest scoring alignment between a pair of glob-
ally homologous sequences under the given scoring scheme (Needleman and Wunsch,
1970). Smith-Waterman local alignment extends the basic Needleman-Wunsch approach
to the case where input sequences may not be globally homologous by identifying locally
high-scoring subsequences (Smith and Waterman, 1981). Both methods utilize dynamic
programming to find the highest scoring alignments. Although such methods could
theoretically be applied to align several sequences of arbitrary length, their dynamic
programming algorithms require O(n®) calculation where n is sequence length and G
is the number of genomes. As either n or G grow the amount of computation required
quickly becomes intractable.

The low-cost and ready availability of genome sequencing has driven development
of scalable methods to align multiple sequences of arbitrary length. Many multiple se-
quence aligners extend Needleman-Wunsch to progressive alignment (Thompson et al.,
1994, Lee et al., 2002, Notredame et al., 2000), which scales O(Gn?). In the progressive
alignment model, a phylogenetic tree guides an alignment procedure where the most
closely related sequences are aligned first and each additional sequence is aligned to

the growing multiple alignment in an order specified by its distance in the phylogenetic



guide tree. A further improvement to the progressive alignment strategy is the addi-
tion of an iterative refinement step performed after the initial progressive alignment (Do
et al., 2005, Edgar, 2004). Tterative refinement repeatedly selects arbitrary sequence(s)
to remove from the alignment and re-align. Empirical studies demonstrate that iter-
ative refinement significantly improves alignments generated by progressive alignment
approaches (Wallace et al., 2005). Surprisingly, iterative refinement produces better
alignments when it considers guide trees other than the topology presumed to be the
‘correct’ phylogeny for the input sequences (Edgar, 2004).

Progressive multiple sequence alignment methods suffer the limitation that applica-
tion to long (typically n > 100Kbp) sequences becomes prohibitively time-consuming.
Several heuristic approaches to align long sequences have been developed under the as-
sumption that highly similar subsequences can be found quickly and are likely to be
part of the correct global alignment. These local alignments are used to anchor a global
alignment, reducing the number of possible global alignments considered during a sub-
sequent O(n?) dynamic programming step. Some spurious local alignments are typically
found due to random sequence similarity, particularly when using a sensitive local align-
ment method. A method for selecting alignment anchors must be employed to filter out
spurious matching regions. Alignment tools such as MUMmer (Delcher et al., 1999),
GLASS (Batzoglou et al., 2000), and AVID (Bray et al., 2003) align pairs of long se-
quences, implementing various methods to discover local alignments. Similar multiple
sequence alignment methods for long sequences have been developed and implemented

in software packages such as MAVID (Bray and Pachter, 2003), Multi-LAGAN (Brudno



10

et al., 2003a), TBA (Blanchette et al., 2004), MGA (Hohl et al., 2002), and Auber-
Gene (Szklarczyk and Heringa, 2006). All of these pairwise and multiple sequence align-
ers assume the input sequences are free from significant rearrangements of sequence
elements, selecting a single collinear set of alignment anchors.

Long genomic sequences typically contain significant rearrangements of orthologous
sequence and methods have recently been developed to align genomic sequence in the
presence of rearrangements (Brudno et al., 2003b, Darling et al., 2004a, Ovcharenko
et al., 2005, Blanchette et al., 2004, Treangen and Messeguer, 2006, Raphael et al., 2004).
Such methods relax the assumption that alignment anchors must occur in the same order
and orientation, allowing inversions and other rearrangements of anchors. Once a set of
anchors has been selected, these methods typically use progressive alignment to complete
a multiple alignment.

Alignment anchor selection in the presence of rearrangements is closely related to
the problem of segmental homology detection. The segmental homology detection task
is simply to identify all homologous regions of sequence among a pair of genomes. One
general approach identifies regions of sequence where local alignments tend to cluster
together (Pevzner and Tesler, 2003a, Hampson et al., 2005, Calabrese et al., 2003, Kurtz
et al., 2004b). Such methods consider the distance between local alignments on the
chromosome as an indicator of segmental homology but do not usually consider quality
(score) of such local alignments or their collinearity. A second set of approaches consid-
ers alignment scores and distances between alignments in a pairwise (Haas et al., 2004)
or multiple sequence setting (Abouelhoda and Ohlebusch, 2004, Bourque et al., 2004).

A third approach considers local alignment quality and collinearity, but not distance
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between local alignments in order to accommodate differential gene content due to dele-
tion and horizontal transfer (Darling et al., 2004a, Mau et al., 2004). Other approaches
combine chromosomal distance, local alignment score, and collinearity metrics (Dar-
ling et al., 2004b, Hampson et al., 2003). None of these methods consider the series of
rearrangement events that would give rise to a given segmental homology structure.
All of the alignment methods described thus far use an ad-hoc scoring penalty to de-
termine the placement of gaps in the alignment. A second body of work assumes a more
rigorous evolutionary model that includes nucleotide birth and death rates in addition
to substitution rates. Methods based on such a model are referred to as “statistical”
alignment methods. When considering the probability of an alignment, these methods
sum over the probability of all possible evolutionary histories that could give rise to that
particular alignment given a fixed phylogenetic tree. The simplest evolutionary model
that considers indels is the TKF91 model, which models single nucleotide insertions and
deletions with equal birth and death rates for all sites in a sequence (Thorne et al., 1991).
The TKF91 model has been studied extensively and extended from pairwise alignment
to alignment on arbitrary phylogenetic trees (Nielsen, 2005). Because TKF91 only mod-
els single nucleotide indels, likelihood calculations for larger indels remain skewed. A
slightly more realistic model was reported in TKF92, which models indels of arbitrary
length, but which may not overlap each other in the evolutionary history (Thorne et al.,
1992), i.e. an inserted sequence may not subsequently have a deletion. A further model
improvement, referred to as the long-indel model, allows overlapping indels and was
recently presented in conjunction with an algorithm to calculate alignment likelihoods
under the model (Miklos et al., 2004). The primary hindrance to widespread adoption of

statistical alignment methods has been their prohibitive computational cost. The most
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efficient implementations of TKF91 require O(2¢n%) time to deterministically compute
the most likely alignment, while the long indel model requires O(n?) time for an ap-
proximate pairwise alignment which allows up to two overlapping indels per site (Lunter
et al., 2003, Nielsen, 2005, Metzler et al., 2001, Fleissner et al., 2005, Lunter et al., 2005,
Holmes and Bruno, 2001). Recent progress in this area has yielded an implementation
of long-indel model alignment called Bali-Phy (Redelings and Suchard, 2005, Suchard
and Redelings, 2006). Bali-Phy simultaneously estimates the alignment and phyloge-
netic tree, using Markov-chain Monte-Carlo to sample the joint posterior distribution
of alignments and phylogenies. The model of evolution assumes that indel rates are
always proportional to substitution rates, thus variability in indel or substitution rates
over time would constitute model violation.

A simple and obvious extension to the basic evolutionary models considers that nu-
cleotide substitutions and indels do not occur with equal probability at all sites in a
sequence. One example are coding regions where silent third base pair substitutions ap-
pear more frequently than substitutions at other sites and frameshift-inducing indels are
usually selected against. Some score-based alignment methods can account for position-
specific mutation rates (Kent and Zahler, 2000, Thompson et al., 1994, Edgar, 2004), but
a more general approach has been implemented using Profile Hidden Markov Models,
which model site-specific substitution, insertion, and deletion rates at all sites (Durbin
et al., 1998). Profile-HMMs require O(n?) time and space to align a sequence to a pro-
file. Construction of the initial profile can proceed from a manually-curated multiple
alignment or de novo using Baum-Welch training. In order to accurately estimate site-
specific mutation rates and produce reasonable alignments, such methods require much

more sequence data than the previously described score based methods. Because large



13

amounts of genome sequence data have not yet become available Profile-HMM methods
have not yet been extended to large genomic sequences.

One criticism of Profile-HMM methods is their ignorance of the phylogenetic rela-
tionship among sequences contributing to the profile. To address this criticism several
Tree-HMM models have been proposed (Qian and Goldstein, 2003, Mitchison, 1999,
Mitchison and Durbin, 1995). Given a phylogeny, such models typically place a Profile-
HMM at each node of the phylogeny, assigning probabilities for transitions between each
pair of Match, Insert, and Delete states along each branch. Although Tree-HMMs can
model site-specific variation along a phylogeny they remain difficult to construct in a
statistically sound manner, usually requiring a pre-existing multiple sequence alignment
and phylogeny. Furthermore, controversy exists over the issue of 'memory’ whereby an
ancestral state biased toward a particular type of insertion or deletion incorrectly biases

descendant states toward the same insertion or deletion (Felsenstein, 2004).

2.0.3 Phylogenetic inference

Assuming that the sequences under study are related, phylogenetic inference attempts
to reconstruct a likely history of their divergence and possibly the history of mutation
events that gave rise to the observed sequences. Early methods used parsimony or some
distance metric over nucleotide substitutions to inform tree inference. Although these
methods can be efficiently applied to a large number of sequences, parsimony tends to
underestimate true phylogenetic distance, while distance-based methods don’t provide
a history of mutation events (Holder and Lewis, 2003).

More recently, methods based on the previously described nucleotide substitution

models have gained acceptance in the form of Maximum Likelihood (ML) or Bayesian
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estimates of phylogeny (Holder and Lewis, 2003). Bayesian methods provide a particu-
larly appealing route for phylogenetic inference because not only can they provide the
most likely consensus tree, but can also assess the uncertainty in various tree topologies
and evolutionary scenarios. Bayesian phylogenetic inference over nucleotide substitution
data was pioneered by Mau et al. (1999), and has since blossomed with several further
refinements and widely used implementations (Larget and Simon, 1999, Huelsenbeck
and Ronquist, 2001, Drummond et al., 2006).

With advances in genome sequencing, analyses of horizontal transfer and genome
rearrangement have become feasible. Early methods to analyze genome rearrangements
focused on determining parsimonious inversion and translocation scenarios among pairs
of sequences (Hannenhalli and Pevzner, 1995). Parsimony models of inversion were
later extended to phylogenetic inference among several rearranged genomes (Tang and
Moret, 2003, Bourque and Pevzner, 2002). Larget et al. (2002) pioneered a Bayesian
method to infer a series of inversion events and an associated phylogeny, and recently
described extensions to their method that enable efficient and reliable analysis of large
data sets (Larget et al., 2004). Recently Miklos (2003) described a Bayesian inference
model for inversions and transpositions between a pair of genomes, however it has yet to
be extended to phylogenetic inference among multiple genomes. Recent work has yielded
new models for rearrangement that include the block interchange operation, whereby a
segment of DNA may excise from the chromosome, form a circular-intermediate, and
re-insert elsewhere in the chromosome, possibly linearizing with different endpoints than

the original excised segment (Yancopoulos et al., 2005, Lu et al., 2005).
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2.0.4 Integrated inference methods

As previously mentioned, the steps of model selection, alignment (inference of orthology),
and phylogenetic inference are interrelated in that inferences made in one step can affect
inferences made in another. Numerous attempts have been made to integrate these steps
into a unified methodology. Many of these methods follow the Expectation-Maximization
paradigm whereby they estimate the alignment given the tree, then re-estimate the tree
given the alignment. One example is MAVID, which iteratively refines tree topology (but
not branch lengths) and a genome alignment (Bray and Pachter, 2003). BADGER uses
Bayesian MCMC to cosample inversion phylogeny and inversion history (Larget et al.,
2004). Lunter et al. (2005) describe an efficient method for cosampling protein sequence
alignments and phylogenetic trees using the TKF91 model, and the aforementioned
Bali-Phy method extends the cosampling to a model that includes multi-residue indels.
Sampling methods have the additional advantage of assessing confidence in a particular

alignment or tree topology in the form of a posterior probability for the inference.
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Chapter 3

Match filtration for local-multiple

alignment

3.1 Introduction

Pairwise local sequence alignment has a long and fruitful history in computational biol-
ogy and new approaches continue to be proposed (Ma et al., 2002a, Brudno and Mor-
genstern, 2002, Noé and Kucherov, 2004, Kent, 2002, Schwartz et al., 2003, Kahveci
et al., 2004). Advanced filtration methods based on spaced-seeds have greatly improved
the sensitivity, specificity, and efficiency of many local alignment methods (Choi et al.,
2004, Li et al., 2006, Sun and Buhler, 2005, Xu et al., 2004, Flannick and Batzoglou,
2005). Common applications of local alignment can range from orthology mapping (Li
et al., 2003) to genome assembly (Jaffe et al., 2003) to information engineering tasks
such as data compression (Ane and Sanderson, 2005). Recent advances in sequence data
acquisition technology (Margulies et al., 2005, Shendure et al., 2005) provide low-cost
sequencing and will continue to fuel the growth of molecular sequence databases. To
cope with advances in data volume, corresponding advances in computational methods
are necessary; thus we present an efficient method for local multiple alignment of DNA

sequence.
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Unlike pairwise alignment, local multiple alignment constructs a single multiple align-
ment for all occurrences of a motif in one or more sequences. The motif occurrences may
be identical or have degeneracy in the form of mismatches and indels. As such, local
multiple alignments identify the basic repeating units in one or more sequences and can
serve as a basis for downstream analysis tasks such as multiple genome alignment (Dar-
ling et al., 2004a, Hohl et al., 2002, Treangen and Messeguer, 2006, Dewey and Pachter,
2006), global alignment with repeats (Sammeth et al., 2005, Sammeth and Heringa,
2006, Raphael et al., 2004), or repeat classification and analysis (Edgar and Myers,
2005). Because it identifies multiple alignments, local multiple alignment differs from
traditional pairwise methods for repeat analysis which either identify repeat families de
novo (Kurtz et al., 2000) or using a database of known repeat motifs (Jurka et al., 2005).

Previous work on local multiple alignment includes an Eulerian path approach pro-
posed by Zhang and Waterman (2005). Their method uses a de Bruijn graph based on
exactly matching k-mers as a filtration heuristic. Our method can be seen as a general-
ization of the de Bruijn filtration to arbitrary spaced seeds or seed families. However, our
method employs a different approach to seed extension that can identify long, low-copy
number repeats.

The local multiple alignment filtration method we present has been designed to
efficiently process large amounts of sequence data. It may be used to quickly find
conserved repetitive motifs in a single sequence, or, may be used to identify putative
homology in a group of concatenated sequences. The remainder of the chapter discusses
our method in the context of finding repeats in a single sequence, although the method
trivially generalizes to finding repeats and putative homology in a group of concatenated

sequences. Our method is not designed to detect subtle motifs such as transcription
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ACAGCTAGCATGGCAA. . .GTTACCTAG Step 2. Hash seeds to identif o?/
1*1*1 = matches of two or more seeds
Step 1. Apply seed pattern at each position
* to egtractper?t?{nerthepforward or P seed 1 AAC _9 }
N-2 Acal N3
Lasc 8y N=9 2 12 GCA
3 ACA 10 AGC N8, 7 ACT  N-3
4 11 N-7 N-8
5 CAC 12 GCA N-6_ACA 10 AGC 6 }
6 - 4 } 11
e 5 CAC

7 ACT

Figure 1: Application of the palindromic seed pattern 1*1*1 to identify degenerate
matching subsequences in a nucleotide sequence of length N. The pattern 1x1*1 indi-
cates a requirement for matching nucleotides at positions 1, 3, and 5 of a subsequence,
while positions 2 and 4 may mismatch. The lexicographically-lesser of the forward and
reverse complement subsequence induced by the seed pattern is used at each sequence
position.

factor binding sites in small, targeted sequence regions—stochastic methods are better

suited for such tasks (Bailey and Elkan, 1995, Siddharthan et al., 2005, Lawrence et al.,

1993).

3.2 Overview of the method

Our local multiple alignment filtration method begins by generating a set of candidate
multi-matches using palindromic spaced seed patterns (listed in Table 1). The seed
pattern is evaluated at every position of the input sequence, and the lexicographically-
lesser of the forward and reverse complement subsequence induced by the seed pattern is
hashed to identify seed matches (Figure 1). The use of palindromic seed patterns offers
computational savings by allowing both strands of DNA to be processed simultaneously.

Given an initial set of matching sequence regions, our algorithm then maximally

extends each match to cover the entire surrounding region of sequence identity. A visual
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Weight Pattern | Seed Rank by Sequence Identity

65% | 70% | 75% | 80% | 85% | 90%
) 11x1x11 1 1 1 1 1 1
6 1x11%kx11%1 1 1 1 1 1 1
7 T1kxIk1*1%%x11 1 1 1 1 1 1
8 111xk1%k1%x111 1 1 1 1 1 1
9 111x1kx1x*x1x111 1 1 1 1 1 1
10 111x1x*x1x1x*x1%x111 1 1 1 1 1 1
11 1111xx1k1x1kx1111 1 1 1 1 1 2
12 IRRRETIESESESEL NN 5 3 1 1 1 1
13 111k kI x bk 1xx1111 | > 10 5) 1 1 1 1
14 1111k*x11x1*x1x11%x1111 2 2 1 1 1 1
15 111111 1xk1+x11x1x1111 1 1 1 1 1 1
16 1111*1*x11x11x*x11x1%1111 2 1 1 1 1 1
18 1111 1%%x11*1*x11*1*x11*x11111 1 1 1 1 1 1
19 11111 11%*1*x111x1xx111%1111 5 2 1 1 1 1
20 | 11111k 111 *x%11*x11*x%11*x1%11111 | > 10 | > 10 3 1 1 1
21 1111111111 x1%11%x111%11111 1 1 1 3 3 2

Table 1: Palindromic spaced seeds used by procrastAligner. The sensitivity ranking of
a seed at various levels of sequence identity is given in the columns at right. A seed with
rank 1 is the most sensitive seed pattern for a given weight and percent sequence identity.
The default seeds used by procrastAligner are listed here, while the additional optional
seeds appear in Tables 17 and 18 of Appendix A.

example of maximal extension is given by the black match in Figure 2. In order to
extend over each region of sequence O(1) times, our method extends matches in order of
decreasing multiplicity-we extend the highest multiplicity matches first. When a match
can no longer be extended without including a gap larger than w characters, our method
identifies the neighboring subset matches within w characters, i.e. the light gray seed
in Figure 2. We then [ink each neighboring subset match to the extended match. We
refer to the extended match as a superset match. Rather than immediately extend the
subset match(es), we procrastinate and extend the subset match later when it has the

highest multiplicity of any match waiting to be extended. When extending a match
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ACGGATTAGAT % ﬁ—
Sequence: AP I

Seed Matches: D = }} L — % o> e
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of black seed: gé %

Subset link to

light gray seed: X EE u §§ E]k/

Figure 2: Seed match extension. Three seed matches are depicted as black, gray, and
light gray regions of the sequence. Black and gray have multiplicity 3, while light gray
has multiplicity 2. We maximally extend the black seed to the left and right and in doing
so, the black seed chains with the gray seed to the left. The light gray seed is adjacent
to only two out of three components in the extended black seed, thus we refer to the
light gray seed as a subset relative to the extended black seed. We procrastinate and
extend the light gray seed later. We create a link between light gray and the extended
black seed match.

with a linked superset (light gray in Figure 2), we immediately include the entire region
covered by the linked superset match—obviating the need to re-examine sequence already
covered by a previous match extension.

We score alignments generated by our method using the entropy equation and exact
p-value method in Nagarajan et al. (2005). Our method may produce many hundreds or
thousands of local multiple alignments for a given genome sequence, thus it is important
to rank them by significance. When computing column entropy, we treat gap characters

as missing data.
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3.3 Algorithm

3.3.1 Notation and assumptions

Given a sequence S = s1, S, ..., sy of length N defined over an alphabet {A,C, G, T},
our goal is to identify local multiple alignments on subsequences of S. Our filtration
method first generates candidate chains of ungapped alignments, which are later scored
and possibly re-aligned. Denote an ungapped alignment, or match, among subsequences
in § as an object M. We assume as input a set of ungapped alignments M. We refer
the number of regions in § matched by a given match M; € M as the multiplicity of M;,
denoted as |M;|. We refer to each matching region of M; as a component of M;. Note
that |M;] > 2V M € M. We denote the left-end coordinates in S of each component
of M; as M;.Ly, M;.Lo, ..., M;.Ljy,, and similarly we denote the right-end coordinates
as M;.R,. When aligning DNA sequences, matches may occur on the forward or reverse
complement strands. To account for this phenomenon we add an orientation value to
each matching region: M;.0O, € {1,—1}, where 1 indicates a forward strand match and
-1 for reverse.

Our algorithm has an important limitation on the matches in M: no two matches M;
and M; may have the same left-end coordinate, e.g. M;.L, # M;.L, V i,j,x,y except
for the identity case when ¢ = j and x = y. This constraint has been referred to by
others as consistency and transitivity (Szklarczyk and Heringa, 2004) of matches. In
the present work we only require consistency and transitivity of matches longer than the

seed length, e.g. seed matches may overlap.
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3.3.2 Data structures

Our algorithm begins with an initialization phase that creates three data structures.
The first data structure is a set of Match Records for each match M € M. The Match
Record stores M, a unique identifier for M, and two items which will be described later
in Section 3.3.3: a set of linked match records, and a subsuming match pointer. The
linked match records are further subdivided into four classes: a left and right superset
link, and left and right subset links. The subsuming match pointer is initially set to a
NULL value. Figure 3 shows a schematic of the match record.

We refer to the second data structure as a Match Position Lookup Table, or P. The
table has N entries pi,pa,...,pn, one per character of S. The entry for p, stores the
unique identifier of the match M; and x for which M;.L, = t or the NULL identifier
if no match has t as a left-end coordinate. We call the third data structure a Match
extension procrastination queue, or simply the procrastination queue. Again, we denote
the multiplicity of a match M by |M|. The procrastination queue is a binary heap of
matches ordered on |M| with higher values of |M| appearing near the top of the heap.
The heap is initially populated with all M € M. This queue dictates the order in which

matches will be considered for extension.

3.3.3 Extending matches

Armed with the three aforementioned data structures, our algorithm begins the chaining
process with the match at the front of the procrastination queue. For a match M; that
has not been subsumed, the algorithm first attempts extension to the left, then to the

right. Extension in each direction is done separately in an identical manner and we
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Match Record List

M,
Left Links Right Links

Subset [Superset| Subset [Superset|
[ null " null null | null
Subsuming match pointer:  null

M, :
My

Procrastination Queue

4 “ . U “

3 .

3| 30 30 .23 Resulting local multiple alignment chain:

@@ [

Figure 3: The match extension process and associated data structures. (A) First we
pop the match at the front of the procrastination queue: M; and begin its leftward
extension. Starting with the leftmost position of M;, we use the Match Position Lookup
Table to enumerate every match with a left-end within some distance w. Only My.L,
is within w of M, so it forms a singleton neighborhood group which we discard. (B)
M; has no neighborhood groups to the left, so we begin extending M; to the right.
We enumerate all matches within w to the right of M;. M; lies to the right of 3 of 4
components of M; and so is not subsumed, but instead gets linked as a right-subset
of M;. We add a left-superset link from M, to M;. (C) Once finished with M; we
pop M, from the front of the procrastination queue and begin leftward extension. We
find the left-superset link from M, to M;, so we extend the left-end coordinates of
Ms to cover M; accordingly. No further leftward extension of M, is possible because
M has no left-subset links. (D) Beginning rightward extension on M, we construct a
neighborhood list and find a chainable match M;, and a subset M,. We extend M to
include M3 and mark M, as inconsistent and hence not extendable. Upon completion
of the chaining process we have generated a list of local multiple alignments.
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arbitrarily choose to describe leftward extension first. The first step in leftward match
extension for M; is to check whether it has a left superset link. If so, we perform a link
ertension as described later. For extension of M; without a superset link, we use the
Match Position Lookup Table P to enumerate all matches within a fixed distance w of
M;. For each component z = 1,2,...,|M;| and distance d = 1,2, ..., w we evaluate first
whether pys, 1, —(a-m;.0,) is not NULL. If not then pyy, 1, —(a.:m,.0,) stores an entry (M;, Y)
which is a pointer to neighboring match M, and the matching component y of M;.

In order to consider matches on both forward and reverse strands, we must evalu-
ate whether M;.O, and M;.0, are consistent with each other. We define the relative
orientation of M;.O, and M,;.0, as 0, ., = M;.O, - M;.0O, which causes 0; ;,, = 1 if
both M;.0, and M;.O, match the same strand and —1 otherwise. We create a tuple of
the form (M;, 0; 4, %, d,y) and add it to a list called the neighborhood list. In other
words, the tuple stores (1) the unique match ID of the match with a left-end at sequence
coordinate M;.L, — (d- M;.0,), (2) the relative orientation of M;.O, and M;.O,, (3) the
matching component z of M;, (4) the distance d between M; and M;, and (5) the match-
ing component y of M;. If M; = M, for a given value of d, we stop adding neighborhood
list entries after processing that one. The neighborhood list is then scanned to identify
groups of entries with the same match ID M; and relative orientation o; ;. ,. We refer to
such groups as neighborhood groups. Entries in the same neighborhood group that have
identical x or y values are considered “ties” and need to be broken. Ties are resolved by
discarding the entry with the larger value of d in the fourth tuple element: we prefer to
chain over shorter distances. After tiebraking, each neighborhood group falls into one of

several categories:

e Superset: The neighborhood group contains |M;| separate entries. M, has higher
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multiplicity than M;, e.g. |M;| > |M;|. We refer to M, as a superset of M.

e Chainable: The neighborhood group contains |M;| separate entries. M; and M,

have equal multiplicity, e.g. |A;| = |M;|. We can chain M; and M,.

e Subset: The neighborhood group contains |M;| separate entries such that |M;| <

|M;|. We refer to M; as a subset of M.

e Novel Subset: The neighborhood group contains r separate entries such that
r < |M;] Nr < |M;|. We refer to the portion of M; in the list as a novel subset
of M; and M, because this combination of matching positions does not exist as a

match in the initial set of matches M.

The algorithm considers each neighborhood group for chaining in the order given
above: chainable, subset, and finally, novel subset. Superset groups are ignored, as any

superset links would have already been created when processing the superset match.

Chainable matches

To chain match M; with chainable match M; we first update the left-end coordinates
of M; by assigning M;.L, «— min(M;.L,, M;.L,) for each (i, j, z,y) in the neighborhood
group entries. Similarly, we update the right-end coordinates: M;.R, < max(M;.R,, M;.R,)
for each (i,7,z,y) in the group. If any of the coordinates in M; change we make note
that a chainable match has been chained. We then update the Match Record for M;
by setting its subsuming match pointer to M;, indicating that M; is now invalid and is
subsumed by M;. Any references to M; in the Match Position Lookup Table and else-
where may be lazily updated to point to M; as they are encountered. If M; has a left

superset link, the link is inherited by M; and any remaining neighborhood groups with
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chainable matches are ignored. Chainable groups are processed in order of increasing d
value so that the nearest chainable match with a superset link will be encountered first.
A special case exists when M; = M;. This occurs when M, represents an inverted repeat

within w nucleotides. We never allow M; to chain with itself.

Subset matches

We defer subset match processing until no more chainable matches exist in the neighbor-
hood of M;. A subset match M; is considered to be completely contained by M; when for
all z,y pairs in the neighborhood group, M;.L, < M;.L,NM;. R, < M;.R,. When subset
match M; is completely contained by M;, we set the subsuming match pointer of M; to
M;. If the subset match is not contained we create a link from M; to M;. The subset
link is a tuple of the form (M;, M, x1,2,...,25y)) where the variables @y ... 2, are
the = values associated with the y = 1...|M;| from the neighborhood list group entries.
The link is added to the left subset links of M; and we remove any pre-existing right

superset link in M; and replace it with the new link.

Novel subset matches

A novel subset may only be formed when both M, and M; have already been maxi-
mally extended, otherwise we discard any novel subset matches. When a novel subset
exists matches we create a new match record M, with left- and right-ends equal to
the outward boundaries of M; and M;. Rather than extend the novel subset match
immediately, we procrastinate and place the novel subset in the procrastination queue.
Recall that the novel subset match contains r matching components of M; and M;. In

constructing M,,,.e;, we create links between M, and each of M; and M; such that
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Figure 4: Interplay between tandem repeats and novel subset matches. There are two
initial seed matches, one black, one gray. The black match has components labelled 1-7,
and the neighborhood size w is shown with respect to component 7. As we attempt
leftward extension of the black match we discover the gray match in the neighborhood
of components 2 and 5 of black. A subset link is created. We also discover that some
components of the black match are within each others’ neighborhood. We classify the
black match as a tandem repeat and construct a novel subset match with one component
for each of the four tandem repeat units: {1},{2,3,4},{5,6},{7}.

Myover is a left and a right subset of M; and M, respectively. The links are tuples of
the form outlined in the previous section on subset matches.

Occasionally a neighborhood group representing a novel subset match may have M; =
M;. This can occur when M, has two or more components that form a tandem or
overlapping repeat. If M;.L, has M,.L, in its neighborhood, and M;.L, has M;.L, in its
neighborhood, then we refer to {x,y, 2z} as a tandem unit of M;. A given tandem unit
contains between one and |M;| components of M;, and the set of tandem units forms a
partition on the components of M;. In this situation we construct a novel subset match
record with one component for each tandem unit of M;. If M; has only a single tandem
unit then we continue without creating a novel subset match record. Figure 4 illustrates

how we process tandem repeats.

After the first round of chaining

If the neighborhood list contained one or more chainable groups we enter another round

of extending M;. The extension process repeats starting with either link extension or by
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construction of a new neighborhood list. When the boundaries of M; no longer change,
we classify any subset matches as either subsumed or outside of M; and treat them
accordingly. We process novel subsets. Finally, we may begin extension in the opposite
(rightward) direction. The rightward extension is accomplished in a similar manner,
except that the neighborhood is constructed from M;.R, instead of M;.L, and d ranges
from —1, —2, ..., —w and ties are broken in favor of the largest d value. Where left links

were previously used, right links are now used and vice-versa.

Chaining the next match

When the first match popped from the procrastination queue has been maximally ex-
tended, we pop the next match from the procrastination queue and consider it for exten-
sion. The process repeats until the procrastination queue is empty. Prior to extending
any match removed from the procrastination queue, we check the match’s subsuming

match pointer. If the match has been subsumed extension is unnecessary.

3.3.4 Link extension

To be considered for leftward link extension, M; must have a left superset link to another
match, M;. We first extend the boundaries of M; to include the region covered by M;
and unlink M; from M;. Then each of the left subset links in M; are examined in turn
to identify links that M; may use for further extension. Recall that the link from M; to
M; is of the form (M;, M;,xq, ..., x,)). Likewise, a left subset link from M; to another
match My, is of the form (M, My, 21, ..., 2u,)). To evaluate whether A/; may follow a
given link in the left subsets of M, we take the set intersection of the x and z values for

each M}, that is a left subset of M;. We can classify the results of the set intersection
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Superset: {z1,..., 2} C {z1,...,2um,} Here M links to every component of

M; that is linked by M;, in addition to others.

Chainable: {z1,...,2n,} = {z1,...,2um,} Here M links to the same set of

components of M; that M; links.

Subset: {zi,..., 2} D {z1,- .., 2m, } Here M; links to every component of M

that is linked by M, in addition to others.

Novel Subset: {z,...,zu, N {z1,. .., 2, } # 0 Here My, is neither a superset,
chainable, nor subset relative to M;, but the intersection of their components in

M; is non-empty. M}, and M, form a novel subset.

Left subset links in M; are processed in the order given above. Supersets are never

observed, because Mj, would have already unlinked itself from M; when it was processed

(as described momentarily). When M} is a chainable match, we extend M; to include

the region covered by M} and set the subsuming match pointer in M} to point to M,;.

We unlink M, from M;, and M; inherits any left superset link that M, may have. When

M, is a subset of M; we unlink M), from M; and add it to the deferred subset list to

be processed once M, has been fully extended. Finally, we never create novel subset

matches during link extension because M) will never be a fully extended match.

If a chainable match was found during leftward link extension, we continue for another

round of leftward extension. If not, we switch directions and begin rightward extension.
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3.3.5 Time complexity

A neighborhood list may be constructed at most w times per character of S, and construc-
tion uses sorting by key comparison, giving O(wN logwN) time and space. Similarly,
we spend O(wN logwN) time performing link extension. The upper bound on the total
number of components in the final set of matches is O(wN). Thus, the overall time

complexity for our filtration algorithm is O(wN logwNN).

3.4 Results

We have created a program called procrastAligner for Linux, Windows, and Mac OS X
that implements the described algorithm. Our open-source implementation is available
as C+-+ source code licensed under the GPL.

We compare the performance of our method in finding Alu repeats in the human
genome to an Eulerian path method for local multiple alignment (Zhang and Waterman,
2005). The focus of our algorithm is efficient filtration, thus we use a scoring metric
that evaluates the filtration sensitivity and specificity of the ungapped alignment chains
produced by our method. We compute sensitivity as the number of Alu elements hit by
a match, out of the total number of Alu elements. We compute specificity as the ratio
of match components that hit an Alu to the sum of match multiplicity for all matches
that hit an Alu. Thus, we do not penalize our method for finding legitimate repeats
that are not in the Alu family.

The comparison between procrastAligner and the Eulerian method is necessarily
indirect, as each method was designed to solve different (but related) problems. The

Eulerian method uses a de Bruin graph for filtration, but goes beyond filtration to
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compute gapped alignments using banded dynamic programming. We report scores for
a version of the Eulerian method that computes alignments only on regions identified
by its de Bruijn filter. The results suggest that by using our filtration method, the
sensitivity of the Eulerian path local multiple aligner could be significantly improved.
A second important distinction is that our method reports all local multiple alignment
chains in its allotted runtime, whereas the Eulerian method identifies only a single
alignment.

We also test the ability of our method to provide accurate anchors for genome
alignment. Using a manually curated alignment of 144 Hepatitis C virus genome se-
quences (Kuiken et al., 2005), we measure the anchoring sensitivity of our method as
the fraction of pairwise positions aligned in the correct alignment that are also present
in procrastAligner chains. We measure positive predictive value as the number of
match component pairs that contain correctly aligned positions out of the total num-
ber of match component pairs. procrastAligner may generate legitimate matches in
the repeat regions of a single genome. The PPV score penalizes procrastAligner for
identifying such legitimate repeats, which subsequent genome alignment would have to
disambiguate. Using a seed size of 9 and w = 27, procrastAligner has a sensitivity of

63% and PPV of 67%.

3.5 Discussion

We have described an efficient method for local multiple alignment filtration. The chains
of ungapped alignments that our filter outputs may serve as direct input to multiple

genome alignment algorithms. The test results of our prototype implementation on
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Accession  Length Rep Fm Alu(bp) Div,% Met Sn% Sp% T(s) Sw w
AF435921 22 Kb 28 10 261 (69) 15.0 (6.4) BEul 96.3 994 1 - -
pro 100 959 1 9 27
715025 38 Kb 52 13 245(85) 15.7(5.7) Eul 98.6 96.7 4 - -
pro 100 825 2 9 27
AC034110 167 Kb 87 18 261 (72) 12.2(5.9) Eul 935 95.2 14 - -
pro 100  97.9 3 15 45
AC010145 199 Kb 118 13 277 (55) 15.0 (5.6) Eul 85.2 93.7 32 - -
pro 991 992 3 15 45
Hs Chr 22 1 Mbp 404 32 252 (79) 15.2 (6.1) Eul 724 99.4 85 - -
pro 983 97.3 20 15 45

Table 2: Performance of procrastAlign and the Eulerian path approach on Alu repeats.
Rep: total number of Alu elements; Fm: number of Alu families; Alu: average Alu
length in bp (S.D.); Div: average Alu divergence (S.D.); Met: alignment method, Eul =
Eulerian, pro = procrastAligner; Sn: sensitivity; Sp: specificity; T: compute time; Sw:
palindromic seed weight; w: max gap size. Alus were identified by RepeatMasker (Jurka
et al., 2005). We report data for the fast version of the Eulerian path method as given by
Table 1 of (Zhang and Waterman, 2005). Sensitivity and specificity of procrastAlign
was computed as described in the text.

Alu sequences demonstrate improved sensitivity over de Bruijn filtration. A promis-
ing avenue of further research will be to couple our filtration method with subsequent
refinement using banded dynamic programming.

The alignment scoring scheme we use can rank alignments by information content,
however a biological interpretation of the score remains difficult. If a phylogeny and
model of evolution for the sequences were known a prior: then a biologically relevant
scoring scheme could be used (Prakash and Tompa, 2005). Unfortunately, the phy-
logenetic relationship for arbitrary local alignments is rarely known, especially among
repetitive elements or gene families within a single genome and across genomes. It

may be possible to use simulation and MCMC methods to score alignments where the
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phylogeny and model of evolution is unknown a priori, but doing so would be computa-

tionally prohibitive for our application.
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Chapter 4

Alignment of closely-related genomes

Genome alignment is a fundamentally different task than sequence alignment. The
nature of genome evolution violates basic assumptions made by traditional alignment
methods, such as complete collinearity and consistency in the phylogenetic signal. To
compensate, a genome alignment method must include not just sequence alignment, but
a method for detecting segmental homology as well, and it must be robust to variance
in the phylogenetic signal.

A second distinguishing feature of genome alignment stems from the fact that genome
sequences are typically much larger than the sequences for which dynamic-programming
based alignment methods were originally designed. The well-known Needleman-Wunsch
algorithm to find the best global alignment of a pair of sequences requires O(N?) com-
pute time (Needleman and Wunsch, 1970). For sequences as large as 10Kbp-100Kbp
modern computational hardware can compute the full score matrix and trace back the
optimal alignment path. However, bacterial genome sequences typically range in size
from 1Mbp to 10Mbp, while eukaryotic genomes can be anywhere between 1Mbp and
several hundred gigabases in size. Computation of a full alignment score matrix using
dynamic programming for such sequences is too time-consuming on modern compute
hardware. Although dynamic programming approaches that exploit parallel hardware

have been used with some success (Martins et al., 2001), an approach that is tractable
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on commodity compute hardware is strongly preferable.

To effectively trim the overall alignment search space without sacrificing alignment
quality, a heuristic commonly referred to as anchored alignment (Delcher et al., 1999)
or banded dynamic programming (Zhang et al., 2000) was devised. Anchored alignment
typically begins by using a fast string-matching method to find high-scoring local align-
ments. It then restricts the computation of scores in the dynamic programming matrix
to the regions around the high-scoring local alignments. Anchored alignment methods
operate under the assumption that the optimal global alignment is very likely to in-
clude the high-scoring local alignments. In general, anchoring heuristics yield quality
alignments in a fraction of the compute time otherwise necessary to compute an optimal
alignment (Ureta-Vidal et al., 2003). As such, all modern genome alignment approaches

use anchoring heuristics.

4.0.1 The Mauve algorithm

Our development of a multiple genome alignment algorithm was motivated by the recent
sequencing of a group of nine enterobacteria. At the time, existing anchored alignment
methods were unable to cope with the substantial amount of genomic rearrangement and
lateral gene transfer that these microbes have experienced. Other aspects of the genomic
biology of these microbes such as the presence of a small number of large-repetitive re-
gions figured prominently into our algorithm design. We refer to the presently described
alignment algorithm as “Mauve.”

When searching for alignment anchors across multiple genomes, problems arise if a
particular repetitive motif occurs numerous times in each sequence because it becomes

unclear which combination of regions to align. Our target data set of enteric genomes
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are known to have significant repetitive regions such as ribosomal RNA operons and
prophages. For a repetitive element existing r times in each of G genomes, there will be
r% possible alignment anchors, of which at most 7 represent truly orthologous anchors.
As more genomes are aligned, the number of possible anchors grows exponentially while
the number of anchors that can be included in an alignment of orthologous sequences
remains constant. Mauve avoids this problem by using approximate Multiple Maximal
Unique Matches (multi-MUMs) of some minimum length & as alignment anchors. Ap-
proximate multi-MUMSs are subsequences shared by two or more genomes that match
according to a seed pattern. As described in the previous chapter, a seed pattern specifies
a pattern of nucleotides that must match. For example 11*11x11% would specify a seed
of length 9 and weight 6 where every nucleotide except the third, sixth, and ninth must
match (Ma et al., 2002b). Furthermore, at least one realization of the matching seed
pattern contained in the matching subsequence must occur only once in those genomes
to satisfy the uniqueness property. We refer to matches which satisfy these properties
as approximate multi-MUMs because they represent unique subsequences which match
each other approximately, tolerating a small amount of degeneracy. Finally, the approxi-
mate multi-MUMs must be bounded on either side by a region without any seed matches.
For the sake of brevity, we will simply use multi-MUMs to refer to approximate multi-
MUDMs unless otherwise noted. Because using unique seeds reduces anchoring sensitivity
in conserved repetitive regions and regions that have undergone numerous nucleotide
substitutions or indels, Mauve employs a recursive anchoring strategy that progressively
reduces k, searching for smaller anchors in the remaining unmatched regions.

The enterobacterial genomes are known to have undergone significant genome re-

arrangements as described in their genome papers. Algorithms used by other global
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multiple alignment systems anchor their alignments by selecting the highest scoring
collinear chain of local alignments (Hohl et al., 2002, Bray and Pachter, 2003, Brudno
et al., 2003a). Such methods preclude identification of the rearrangements known to
exist in our data set and many others. To successfully align our target genomes, the an-
chor selection method should identify consistent (collinear) subsets of local alignments to
use as anchors while filtering out unlikely local alignments. Ideally, an algorithm would
identify a maximum-weight set of anchors such that each collinear subset of anchors
meets some minimum-weight criteria. This problem can be cast as the graph-theoretic
Maximum Subgraph with Large Girth problem and thus an exact solution is computa-
tionally intractable (Raphael et al., 2004, Pevzner et al., 2004). Mauve uses a greedy
breakpoint elimination algorithm to generate an approximate solution to the maximum-
weight non-collinear anchoring problem.

To align the intervening regions of sequence between anchors our method employs
the progressive dynamic programming approach of Clustal-W (Thompson et al., 1994).
In progressive alignment, a phylogenetic guide tree specifies the optimal progression of
sequences to align when building the multiple alignment. Rather than recalculating a
guide tree during each alignment of intervening regions, Mauve infers a single global
phylogenetic tree. Using a single average genome phylogeny not only saves compute
time but recent results show it may yield a more robust phylogeny (Rokas et al., 2003).

The alignment algorithm can be summarized as follows:
1. Find local alignments (multi-MUMs)

2. Use the local alignments to calculate a phylogenetic guide tree
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3. Select a subset of the local alignments to use as anchors-these anchors are parti-

tioned into locally collinear blocks (LCBs)

4. Perform recursive anchoring to identify additional alignment anchors within and

outside each LCB
5. Perform a progressive alignment of each LCB using the guide tree

The following sections give an overview of each step in the alignment process.

Finding local alignments

Mauve finds multi-MUMs using a simple seed-and-extend hashing method similar to
that used by GRIL (Darling et al., 2004b). In addition to finding matching regions that
exist in all genomes, the algorithm identifies matches that exist in only a subset of
the genomes being aligned. While the seed-and-extend algorithm has time complexity
O(G?n + Gnlog Gn) where G is again the number of genomes and n average genome
length, it is very fast in practice. Finding multi-MUMs typically consumes less than a
minute per bacterial size genome, and 3-4 hours per mammalian genome on a standard
workstation computer. Appendix B contains a detailed description of the matching
algorithm, which has been extended to approximate string matching with gapped seed
patterns. The resulting local-multiple alignments are similar in nature to the alignments
produced by procrastAligner, except that internal gaps are not permitted.

Formally we define each multi-MUM as a tuple (L, S, ...Sg) where L is the length
of the multi-MUM, and S; is the left-end position of the multi-MUM in the j genome
sequence. We denote the resulting set of multi-MUMs as M = {M;...My}. The i

multi-MUM in M is referred to as M;. To refer to the length of M; we use the notation
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M;.L and similarly, we refer to the left end of M, in the j** genome sequence using
the notation M;.S;. If multi-MUM M; includes a region in the reverse complement
orientation in sequence j, we define the sign of M;.S; to be negative. Finally, if multi-
MUM M; does not exist in sequence j, we define M;.S; to be 0 — the left-most position

in any genome is 1 (or -1).

Calculating a guide tree

The method described to find local alignments differs from that used by GRIL in that
it can identify local alignments in subsets of the genomes under study. Mauve exploits
the information provided by subset multi-MUMs as a distance metric to construct a
phylogenetic guide tree using Neighbor Joining (Saitou and Nei, 1987).

Specifically, the ratio of base pairs shared between two genomes to their genome
length provides an estimate of sequence similarity. A log transformation converts the
similarity estimate to a distance value for the Neighbor Joining distance matrix. Because
multi-MUMs can overlap each other, calculating the similarity metric requires that over-
laps among multi-MUMSs are resolved such that each matching residue counts only once.
To resolve an overlap, one match remains unchanged while the overlapping portion of
the other match gets trimmed off and its remaining portion can still be counted. Mauve
resolves overlaps in favor of the higher multiplicity match, where multiplicity(M;) is
defined as the number of genomes for which M;.S; # 0. If the multiplicity of two
overlapping matches is identical, the overlap is resolved in favor of the longer match.

After eliminating overlaps in M, we can count the number of matching residues
Match,, between two genomes G, and G, as Matchy, = SIM(M;.8,)°(M;.S,)°M;.L.

The distance between genomes can then be calculated as dy,q10r (G2, Gy) = —log %
AR Yy
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This definition of distance is similar to that used by others for whole-genome phylogeny
reconstruction (Henz et al., 2005).

Because the anchor selection method described below operates only on multi-MUMs
with multiplicity(M;) = G, the guide tree is calculated prior to anchor selection so that

it can take advantage of multi-MUMs with multiplicity(M;) < G.

Selecting a set of anchors

In addition to local alignments that are part of truly homologous regions, the set of multi-
MUMs M may contain spurious matches arising due to random sequence similarity. This
step attempts to filter out such spurious matches while determining the boundaries of
locally collinear blocks (LCB). An LCB can be considered a consistent subset of the local
alignments in M. Formally, an LCB is a sequence of local alignments [cb C M, lcb =
{My, My, ..., My} that satisfies a total ordering property such that M;.S; < M; .S
holds for all 7, 1 < ¢ < |lcb| and all j, 1 < j < G. For a given set of multi-MUMs,
the minimum partitioning of M into collinear blocks can be found through breakpoint
analysis (Blanchette et al., 1997). Breakpoint analysis requires that matching regions
exist in all genomes under study, so multi-MUMs with multiplicity less than G are
removed from M before performing this step of the algorithm.

Given a minimum weight criteria MinimumWeight > 0, Mauve uses a greedy break-
point elimination algorithm to remove low-weight collinear blocks of M. As part of step
3 above, Mauve performs the following substeps repeatedly until all collinear blocks in
M meet the minimum weight requirement:

3.1 Determine a partitioning of M into collinear blocks CB

3.2 Calculate the weight, w(cb;) of each collinear block cb; € CB
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3.3 Identify the minimum weight collinear block: let z = mingecp w(cb)

3.4 Stop if w(z) > MinimumW eight

3.5 Delete the minimum weight collinear block: remove each multi-MUM M € z
from M

3.6 Where breakpoints have been eliminated by removing z merge surrounding collinear
blocks and update their weights

3.7 Go to step 3.3

Here w(cb) is defined as Xy M;. L. Step 3.1 is identical to the method used by
GRIL for partitioning M into collinear subsets and is described in Appendix C.

In order to provide a fair measure of weight, each nucleotide in an LCB should count
only once toward its weight. For this reason, breakpoint determination uses the set of
non-overlapping multi-MUMs that remain after guide tree calculation. By default the
MinimumW eight parameter is set to 3k, where k is the seed length used during the
initial search for multi-MUMs. We chose 3k as a default minimum weight because it ap-
pears to filter the majority of spurious matches in data sets we have evaluated. Figure 5
illustrates the process of identifying collinear blocks of multi-MUMs and how removing
a low-weight collinear region can eliminate a breakpoint. The resulting collinear sets
of anchors delineate the LCBs that are used to guide the remainder of the alignment

process.

Recursive anchoring and gapped alignment

The initial anchoring step may not be sensitive enough to detect the full region of
homology within and surrounding the LCBs. In particular, repetitive regions and regions

with frequent nucleotide substitutions are likely to lack sufficient anchors for complete
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A) The initial set of matching regions:
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B) Minimum partitioning into collinear blocks:

Figure 5: A pictorial representation of greedy breakpoint elimination in 3 genomes. A)
The algorithm begins with the initial set of local alignments (multi-MUMs) represented
as connected blocks. Blocks below a genome’s center line are inverted relative to the
reference sequence. B) the matches are partitioned into a minimum set of collinear
blocks. Each sequence of identically-colored blocks represents a collinear set of matching
regions. One connecting line is drawn per collinear block. Block 3 (yellow) has a low
weight relative to other collinear blocks. C) As low weight collinear blocks are removed,
adjacent collinear blocks coalesce into a single block, potentially eliminating one or more
breakpoints. Gray regions within collinear blocks are targeted by recursive anchoring.
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alignment. Using the existing anchors as a guide, two types of recursive anchoring
are performed repeatedly. First, regions outside of LCBs are searched to extend the
boundaries of existing LCBs and identify new LCBs. In figure 1C, this corresponds to
searching the white regions outside LCBs. Second, unanchored regions within LCBs
are searched for additional alignment anchors. This corresponds to searching the grey
regions within LCBs in Figure 1C.

When searching for additional anchors outside existing LCB boundaries, two fac-
tors contribute to Mauve finding additional anchors. First, Mauve uses a smaller value
of the match seed size k. Second, only the regions outside existing LCB boundaries
are searched, so regions not unique in the entire genome may be unique within re-
gions outside LCBs. Not only can the range of existing LCBs be extended by searching
regions outside LCB boundaries, but new LCBs that meet the minimum weight re-
quirement can be identified as well. To perform the search, the outside sequences in
each genome are concatenated into a single sequence per genome. We refer to the set
of concatenated sequences as S and the concatenated sequence from the j* genome

as S;. Multi-MUMs of minimum length & are found, where k = seed_size(S) — 2,

length(S;)

). Because the left-end coordinates of each new

and seed _size(S) = log, (5.,
multi-MUM are defined in terms of the concatenated sequence they must be transposed
back into the original coordinate system. Also, any matches spanning two concatenated
subsequences must be split. The transposed multi-MUMs are added to M and iterative
removal of low-weight collinear subsets is performed as above. The process of search-
ing regions outside LCBs is repeated until ¥ ;ccsw(cs) remains the same during two

successive iterations of the search.

In addition to missing anchors outside the boundaries of LCBs, the initial anchoring
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pass may have lacked the sensitivity to find anchors in large regions within each LCB.
Because progressive alignment requires relatively dense anchors (at least one anchor
per 10Kbp of sequence), Mauve performs recursive anchoring on the intervening regions
between each pair of existing anchors. Not only does this step anchor more divergent
regions of sequence, it also locates anchors in conserved repeats because many k-mers
that are not unique in the whole genome are likely to be unique within the intervening
regions between existing anchors.

Unlike other genome aligners which perform a fixed number of recursive passes with
a pre-determined sequence of anchor sizes, Mauve calculates a minimum anchor size
based on the length of the intervening sequence and stops recursive anchoring when
either no additional anchors are found or when the intervening region is shorter than
a fixed length, defaulting to 200bp. During each recursive anchor search new LCBs
may be found, for example in the case of local rearrangements or in-place inversion, and
these new LCBs must also meet the MinimumW eight requirement. For each recursive
search, k is calculated as above: k = seed size(S) where S is the set of intervening
sequences, one per genome. By dynamically calculating the value of k, Mauve ensures
that k is sized appropriately for the intervening region. Selecting k£ too large prevents
discovery of multi-MUMs in polymorphic regions, whereas selecting k£ too small increases
the likelihood that k-mers will not be unique in the intervening region.

Armed with a complete set of alignment anchors, Mauve performs a Clustal-W pro-
gressive alignment using the genome guide tree calculated previously. The progressive
alignment algorithm is executed once for each pair of adjacent anchors in every LCB,
calculating a global alignment over each LCB. Tandem repeats less than 10Kbp in total

length are aligned during this phase. Regions larger than 10Kbp without an anchor are
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ignored.

4.1 Alignment results

The Mauve genome alignment procedure results in a global alignment of each locally
collinear block that has sequence elements conserved among all the genomes under study.
Nucleotides in any given genome are aligned only once to other genomes suggesting or-
thology among aligned residues—Mauve makes no attempt to align paralagous regions.
The remaining unaligned regions may be lineage-specific sequence, or conserved or par-
alagous repetitive regions and can be identified as such during subsequent processing
with other tools. Large ( > 10Kbp) regions introduced to a subset of the genomes by
horizontal transfer are not aligned by Mauve because they do not have alignment an-
chors conserved among all sequences. Both large and small regions existing in only a

subset of the genomes and that also underwent local rearrangement remain unaligned.

Alignment of 9 enterobacteria

We applied Mauve to align the the 9 target enterobacterial genomes shown in Fig-
ure 6. Previous studies of these genomes indicates they underwent significant genome
rearrangement, horizontal transfer, and other recombination (Perna et al., 2001, Deng
et al., 2003). Mauve consumed 3 hours to align the 9 taxa on a 2.4GHz computer with
1GB of RAM. The alignment of the 9 taxa reveals 45 LCBs with a minimum weight of
69. Figure 6 shows the guide tree generated for these species. The visualization of the
genome rearrangement structure generated by the Mauve viewer is shown in Figure 7.

We can quickly visually confirm several known inversions such as the O157:H7 EDL933



S. flexneri 2A S. flexneri 2A 2457T
4,607,203 bp 4,599,354 bp
Uinetal. 2002) \ [ (Weietal. 2003) E. colj 0157:H7 EDL933

5,524,977 bp

(Perna et al. 2001)
E. coliO157:H7 VT2 Sakai
5,498,450 bp
(Hayashi et al. 2001)

E. coliK12 MG1655
4,639,221 bp
(Blattner et al. 1997)

E. coli CFT073
5,231,428 bp
(Welch et al. 2002)

S. enterica Typhi CT18
4,809,037 bp
(Parkhill et al. 2001)
S. entericaTyphiTy2 S, enterica Typhimurium LT2
4,791961bp 4,857,432 bp
(Deng etal.2003)  (McClelland et al. 2001)
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Figure 6: An unrooted phylogenetic tree relating nine enteric genomes. The tree is a
phylogenetic guide tree calculated using Neighbor-Joining on a genome-content distance

metric.
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Figure 7: Mauve visualization of an alignment of the 9 target enterobacteria shown in
Figure 6. Each genome sequence is plotted along a horizontal track. Locally collinear
blocks in each genome (regions without rearrangements) are surrounded by a colored
box and connected to the homologous region in each of the other genome sequences.
Blocks below a genome’s center line are in the reverse complement orientation relative
to the reference genome. Within each locally collinear block, a similarity plot shows
the average sequence conservation in that region. The Shigella and Salmonella genomes
have undergone more genome rearrangements than that of E. coli, likely due to the
presence of specific mobile genetic elements.
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inversion relative to K-12 (Perna et al., 2001) and the large inversion about the origin
of replication among the S. enterica serovars Typhi CT18 and Ty2 (Deng et al., 2003).

We proceeded to extract conserved backbone sequence from the alignment. Again,
backbone is defined as regions of the alignment containing more than 50 gap-free columns
without stretches of 50 or more consecutive gaps in any single genome sequence. Under
this definition, the 9 enterobacteria have 2.86Mbp of conserved backbone sequence bro-
ken into 1252 backbone segments. Across the backbone the level of nucleotide identity is
high, above 95% within each Escherichia and Salmonella genus, and about 70% across

the two genuses (data not shown).

4.1.1 Alignment of mammalian genomes

We applied the Mauve genome alignment system to perform a whole-genome align-
ment of the mouse, rat, and human genomes. The RepeatMasked assemblies of human
(NCBI 35), mouse (NCBI 33), and rat (RGSC 3.4) were searched for unique 3-way
seed matches on the forward and reverse strands using the palindromic seed pattern:
11111%111%11%1*%11%x111%11111. This seed pattern is the most sensitive pattern at
weight 21 for sequences with 65%-75% identity, as described in Chapter 3. Initial seed
matches were maximally extended in each direction until the seed pattern no longer
matched at any overlapping position. A total of 922,081 ungapped 3-way alignments
containing unique sequence resulted. The initial set of 3-way matches gave rise to 567,782
LCBs, to which we applied greedy breakpoint elimination to remove all LCBs up to a
minimum weight of 55, yielding a baseline set of 520,423 3-way matches that compose
6483 LCBs. The complete analysis consumed approximately 24 hours on a 1.6GHz

Linux PC with 2.5GB memory and two hard disks used for an external-sort of the string
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Figure 8: Mauve visualization of locally collinear blocks identified between concatenated
chromosomes of the mouse, rat, and human genomes. Each of the 1,251 blocks shown
here have a minimum weight of 90. Red vertical bars demarcate interchromosomal
boundaries. The Mauve rearrangement viewer enables users to interactively zoom in
on regions of interest and examine the local rearrangement structure. The computation
consumed approximately 24 hours on a 1.6GHz workstation with 2.5GB memory.

matching data structures.

We further applied greedy breakpoint elimination to the baseline set of 6,483 LCBs,
recording the observed genomic permutation at each successively higher LCB weight up
to a minimum weight of 100,000. At minimum weight 97,673 (the last weight before
100,000), there are 75 3-way LCBs among the mouse, rat, and human genomes. At
weights larger than 500, the LCB weight roughly corresponds to the overall chromosomal
length of an LCB, with the average LCB chromosomal length being 100-1000x the LCB
weight. A visualization of the overall mammalian LCB structure is shown in Figure 8.
Complete 3-way mammalian genome alignments based on the initial set of 6,483 LCBs
were computed using 24 hours of parallel compute time on a 96-CPU Orion Deskside
cluster. The results are available from http://gel.ahabs.wisc.edu/ koadman/orion_

results
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4.2  Discussion

With the advent of genome sequencing a new type of sequence alignment problem, that
of whole genome comparison, has emerged. Early approaches to genome alignment were
designed to tackle dramatically increased sequence lengths, but did not consider the ad-
ditional types of evolutionary events observed on the genome scale. Genome rearrange-
ments, horizontal transfer, and duplication obfuscate orthology. As genomes continue to
be sequenced, automatic and accurate identification of genome rearrangements becomes
increasingly important, especially as high levels of rearrangement have been observed
among both eukaryotes and prokaryotes (Pevzner and Tesler, 2003b, Lefebvre et al.,
2003, Pevzner and Tesler, 2003a).

The Mauve genome alignment method represents a first step toward multiple genome
comparison in the presence of large-scale evolutionary events. It is capable of aligning
conserved regions in the presence of genome rearrangement, and appears to scale ef-
ficiently to long genomes. However, our experience with Mauve clearly indicates that
many challenges remain in genome alignment. A more sensitive local alignment tech-
nique would permit our method to be applied to more distantly related organisms. A
method for determining breakpoints with local alignments existing in a subset of the
genomes would facilitate anchored alignment of the large lineage-specific regions cur-
rently missed.

Some organisms are known to have small, local sequence rearrangements such as
reordering of protein domains in coding regions. In such cases, the proximity of the
rearrangement to neighboring homologous sequence should clearly be considered. Other

types of rearrangement do not exhibit locality bias: symmetric inversions about the
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origin and terminus of replication and rearrangements mediated by mobile elements are
common in prokaryotes and can move sequence to distant parts of the genome. A more
sophisticated rearrangement scoring method may attempt to score a particular pattern of
anchors based on the sequence of rearrangement events and recombination mechanisms

suggested by that pattern of anchors.

4.3 Acknowledgments

Portions of this chapter appeared as Darling, Mau, Blattner, and Perna (2004a).
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Chapter 5

Alignment of genomes with

lineage-specific content

5.1 Introduction

Advances in genome sequencing technology have made large-scale sequencing of micro-
bial genomes not only possible, but relatively affordable (Margulies et al., 2005, Shendure
et al., 2005). It has been estimated that current genome sequences represent less than
1% of global microbial species diversity (Tettelin et al., 2005). Studies aiming to cata-
log environmental sequence diversity have already produced initial data (Venter et al.,
2004, Tringe et al., 2005), and more are expected to follow. Genomic sequence compar-
ison stands to provide a framework for understanding the biology of newly sequenced
organisms through comparison to model organisms.

In the context of comparative genomics, whole genome alignments solve an important
problem. While it may be possible to assess the gene content of an organism using gene-
based reciprocal-best-hit BLAST methods, such approaches are error-prone (Koski and
Golding, 2001), neglect important non-genic content and perhaps more importantly,
frequently neglect comparison of overall genome structure. Genome alignment, on the

other hand, provides a framework for simultaneous comparison of genic and non-genic
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Organism ‘ Genome size w/Plasmids ‘ Accession ‘
E. coli K12 MG1655 4654221 U00096

E. coli O157:H7 EDL933 5623806 AE005174
E. coli O157:H7 Sakai 5594477 BA000007

E. coli HS 4643538 AAJY00000000

E. coli E24377A 4980187 AAJZ00000000
E. coli CFTO073 5231428 AE014075
E. coli UTI8Y 5179971 CP000243
Shigella boydii Sbh227 4646520 CP000036
Shigella flexneri 2457T 4988914 AE014073
Shigella flexneri 301 4828821 AE005674
Shigella dysenteriae SA197 4551958 CP000034
Shigella sonnei Ss046 5039661 CP000038
Salmonella enterica Choleraesius B67 4944000 AE017220
Salmonella enterica Typhi Ty2 4791961 AE014613
Salmonella enterica Typhi CT18 5133713 ALb513382
Salmonella typhimurium LT2 4951371 AE006468
Salmonella paratyphi A ATCC9150 4585229 CP000026
Yersinia pestis Antiqua 4879836 CP000308
Yersinia pestis Nepal 516 4646286 CP000305
Yersinia pestis 91001 4803217 AE017042
Yersinia pestis CO92 4829855 AL590842
Yersinia pestis KIM 4781914 AE009952

Yersinia pseudotuberculosis IP31758 4721828 AAKTO00000000
Yersinia pseudotuberculosis 1P32953 4840899 BX936398

Erwinia chrysanthems 3937 4922802 -
Erwinia caratovora SCRI11043 5064019 -

Table 3: Twenty-five publicly-available, finished enteric genomes sequences form our
target set for multiple genome alignment.

content and genome structure. Genome alignment faces a challenge, however, as most
current methods do not account for large-scale mutational forces that disrupt gene order,
create paralogs, and incorporate novel content into genomic sequences. Furthermore, of
the genome alignment methods that do exist, few have been integrated into a single
coherent analysis methodology, limiting their widespread use.

In the present study, we focus on a large set of enteric bacteria (listed in Table 3)

whose genomes have proven unalignable using previous techniques. This group includes
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microbes whose rates and patterns of mutation exhibit substantial variability, as shown
in Figure 9. Specifically, the closely related members of the Yersinia genus appear to
have unstable chromosome structure (Deng et al., 2002), showing evidence for numerous
rearrangements since their divergence 1,500-20,000 years ago (Achtman et al., 1999).
At the opposite extreme, estimates place the speciation of E. coli and Salmonella at
120-160 million years ago (Ochman and Wilson, 1987), but cross-species comparisons
show little or no change in genome organization among FE. coli and Salmonella. Thus,
rates of rearrangement in enteric bacteria are lineage-specific and can vary substantially.

In addition to genome rearrangement, the genomes of enteric bacteria also undergo
substantial gain and loss of genetic material, which we collectively refer to as gene fluz.
Within the species E. coli, pairwise comparisons of individual isolates indicate that each
isolate may contain as much as 20% novel gene content relative to the other (Perna
et al., 2001). The large amount of novel content in E. coli isolates implies that either
the cenancestor of E. coli had a relatively large genome which has undergone lineage-
specific reductions, or that E. coli rapidly acquires novel content from the environment.

When designing a system for multiple genome alignment, the observed heterotachy
in rates of genomic rearrangement and gene flux becomes an important consideration.
An alignment scoring scheme that scales a rearrangement penalty based on nucleotide
divergence among taxa would not accurately capture the patterns observed in our data.

We describe a new genome alignment method that directly addresses heterotachy in
the rates of genomic rearrangement and gene flux. The new method extends previous
methods for progressive genome alignment (Brudno et al., 2003a, Bray and Pachter,
2003) by using an anchor selection scheme that applies a breakpoint penalty to ac-

count for rearrangement. The scoring method adjusts the breakpoint penalty based
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Figure 9: Pairwise genome alignments of enteric bacteria reveal the level of nucleotide
identity in conserved segments, average fraction of the genome contained in conserved
segments, and number of gene-order breakpoints among each pair. Within the genus
Yersinia little nucleotide-level divergence exists, but a substantial amount of genomic
rearrangement has occurred (rightmost blue points). For easier visualization, the muta-
tion space has been split into three focused regions of nucleotide identity which contain
all pairwise comparisons.

on pairwise estimates of breakpoint distance and genome conservation distance. We
apply a random-walk statistic to the resulting multiple genome alignments to distin-
guish segments conserved among subsets of the taxa from segments conserved among
all taxa and from novel sequence. We implement the new alignment method in a
freely available, open-source software package called Progressive Mauve, available from

http://gel.ahabs.wisc.edu/mauve

5.2 Methods

The Progressive Mauve alignment method consists of five basic steps: (1) local-multiple
alignment of highly similar unique subsequences, (2) construction of breakpoint and con-
servation distance matrices and a conservation-based guide tree, (3) progressive anchored

alignment, (4) iterative refinement within collinear segments, and (5) identification of
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segments conserved among two or more genomes using random-walk statistics and tran-

sitive homology relationships. We describe each of these steps in turn below.

Notation and assumptions

Our genome alignment algorithm takes as input a set of G genome sequences ¢y, ga,- -+ €
G. We denote the length of genome i as |g;|. Our method computes alignments along a
guide tree ¥, and we use n to denote an arbitrary node in . As W is a rooted bifurcating
tree, an internal node n always has two children, which we refer to as n.c; and n.cy or
simply ¢; and ¢, when n is implied by context. Furthermore, we define the set of leaf
nodes at or below n as Leaf(n) and similarly, the leaf nodes at or below the children of
n as Leaf(c;) and Leaf(ce). The two sets of leaf nodes on ¢; and ¢y are disjoint, and
each leaf node represents a genome from the set of input genomes G. Finally, we use
the function Des(n) to refer to all descendant nodes at or below n.

Various default parameter settings in our software implementation depend on the
average length of input genome sequences. We define a function to compute average

genome length as:

AvgSize(G) =) %

geG
5.2.1 Local multiple alignment

We perform local-multiple alignment using a variation of the technique described in
Appendix B. The new seed-and-extend string matching method seeds local multiple
alignments in unique regions of sequence that match in two or more genomes, just like
the previous method. If a seed matches in three or more genomes but is unique in

only a subset of those genomes, the new method extends the seed among the subset in
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which it is unique. The previous approach would have ignored such seed matches. We
further improve the new method to use palindromic spaced seeds Darling et al. (2006),
allowing for some degeneracy in the matching regions. Thus, the resulting local multiple
alignments can no longer be considered multi-MUDMs, as they may contain mismatches
(but no indels). By default, we use a seed with weight equal to log,(AvgSize(G)/1.5.
For enteric genomes, the default seed weight is 15, with length 23. We refer to the initial

set of local multiple alignments generated in this step as M;piai-

5.2.2 Pairwise distance matrix and guide tree construction

We construct two distance matrices, one which estimates the breakpoint distance among
each pair of genomes, and a second which estimates the amount of non-homologous
sequence among any pair of genomes (conservation distance). We refer to the breakpoint
distance matrix as B and the conservation distance matrix as C. Both are G x G matrices
with values in the range [0, 1]. We compute the conservation distance in the same manner
as previously reported Darling et al. (2004a). Briefly, the conservation distance for a pair
of genomes is the average fraction of each genome covered by pairwise local alignments,
subtracted from one to form a distance. The precomputed local multiple alignments are
projected to pairwise alignments for the purpose of computing conservation distance.
The breakpoint distance between a pair of genomes G;,G; is simply the number
of breakpoints in homologous gene order between that pair of genomes. Since we do
not know a priori which segments of GG; and G; are homologous we must estimate the
breakpoint distance through genome alignment. Without already knowing the relative
amounts of nucleotide divergence, gene flux, and genomic rearrangement among G, and

G, it is difficult to pick a single breakpoint penalty for greedy breakpoint elimination
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Shift in minimum LCB score during block removal
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Figure 10: The change in the number of LCBs as minimum scoring LCB are successively
removed. Pairwise comparisons of E. coli K12 MG1655 with several other enterobacteria
are shown. A pronounced downward shift in the number of LCBs occurs as the minimum
score surpasses 2000. For this data set we use a minimum LCB score of 100,000 to provide
a conservative estimate of breakpoint distance.

(described in Chapter 4) that provides precise estimates of the breakpoint distance for
any G; and G;. We use the anchor scoring metrics described below to compute LCB
anchor scores on pairwise matches among each pair of G; and G;. However, we observe
that small, usually spurious, matches constitute the large number of low-scoring LCBs
present in most pairwise comparisons, whereas most of the genome (and matches) usually
reside in a small number of high scoring LCBs.

Figure 10 illustrates the number of LCBs as a function of the minimum LCB score
remaining during application of greedy breakpoint elimination to enteric genome se-
quences. Manual validation of genome alignments indicates that only correct pairwise
LCBs remain at minimum LCB scores ranging between 30,000-50,000. Furthermore,
it appears that a conservative scoring threshold of 100,000 still captures the relative
number breakpoints among pairwise comparison. Since we use estimated breakpoint

distances as scaling factors for subsequent alignment scoring, we do not need to know
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the absolute breakpoint distance; a relative estimate of rearrangement rate suffices.
The software implementation of our method takes the default minimum LCB score for
distance estimation to be: 45001logy(}_ cq %) which equates to roughly 100,000 for
genomes averaging 5Mbp in size.

The breakpoint distance is the total number of pairwise LCBs among G; and Gj,
minus 1, however B;; must be a value between 0 and 1. Referring to the estimated

breakpoint distance between G; and Gj as d, j, we arrive at values for B through the

following normalization:

AvgSize(G

MaxDist(G) = max(%;o()hr%ax(}da,b)
a,GpE

dij

B,, = .
7 2Max Dist(G)

Here, AvgSize(G) computes the average genome size, while MaxDist(G) computes
the maximum breakpoint distance. Rather than strictly using the maximum observed
breakpoint distance, we estimate a "high" rate of rearrangement to be 20 breakpoints
per megabase of sequence and use the maximum of the "high" estimate and the ob-
served estimates as our normalizing distance. Without this adjustment, the values of
B would vary considerably when analyzing only stable genomes versus a combination
of rearranged and stable genomes. Finally, we multiply MaxDist(G) by two to ensure
that distances never exceed 0.5, a value which provides substantial scaling of the scoring
functions described below.

We compute the topology and branch lengths of the guide tree ¥ using neighbor-
joining (Saitou and Nei, 1987) on the pairwise conservation distance matrix. Our con-

servation distance measure is not an additive distance, thus the guide tree may have
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negative branch lengths. In general, negative lengths are inconsequential to the align-

ment procedure.

5.2.3 Objective scores

Like many sequence alignment methods, Progressive Mauve seeks to optimize a well-
defined objective score which has been designed to assign higher values to better align-
ments. For performing gapped alignments of collinear segments, we apply the sum-of-
pairs score with affine gap penalties (Thompson et al., 1994, Feng and Doolittle, 1987).
For selecting the collinear chains of local alignments that serve as genome alignment
anchors we apply a different objective score which we refer to as the the sum-of-pairs
anchoring score. We also describe a variation on the sum-of-pairs anchoring score which

can account for the genome arrangement inferred at internal nodes of the guide tree.

Local alignment scoring

During the course of genome alignment, our method attempts to discriminate between
local alignments that suggest orthology (or xenology) and alignments of regions with
random similarity or paralogy. Local alignments believed to be in orthologous (or xenol-
ogous) regions ultimately become anchors for the whole-genome alignment. We score
local alignments using an anchor scoring scheme designed to assign high scores to well-
conserved regions that are unique in each genome.

Prior to beginning genome alignment, we compute a uniqueness value for each po-
sition of every input genome. For a given position in G;, the uniqueness is calculated
as 1 over the number of genome-wide matches to the spaced seed pattern at that site.

The uniqueness of each site always ranges between 1 and 0, with highly repetitive sites
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having uniqueness values close to 0. We refer to the uniqueness value of site x in G; as
U,..

For a pairwise local alignment M among genomes G; and G, we compute the average
uniqueness of M using only sites in G; and G, that are aligned to each other in M.
Skipping unaligned sites prevents large internal gaps from influencing the uniqueness of
M. Define an aligned column of M as a tuple col = (a, b) containing the aligned sequence
coordinates in G; and G, and refer to coordinates as col.a and col.b, respectively. If we
define the set of all aligned columns in M as cols(M), then the average uniqueness score

of M can be written as

Ui col.a U'co
Uniqueness(M) = Z col.a + YUjicolb

2|cols(M)|
col€ecols(M)

We score the quality of a given pairwise local alignment M using the HOXD nu-
cleotide substitution matrix (Chiaromonte et al., 2002). The HOXD matrix has been
demonstrated to provide good discrimination between homologous and non-homologous
sequence in a variety of organisms, even at high levels of sequence divergence. We use
previously derived affine gap penalties, -400 for a gap open and -35 for a gap exten-
sion (Schwartz et al., 2003). We refer to the pairwise affine gap and substitution score
as PairScore(M).

The total anchor score of M is computed as

AnchorScore(M) = PairScore(M) - Uniqueness(M).

LCB scoring

Although in general an LCB may refer to a collinear segment of two or more genomes,

the LCBs considered during our progressive alignment procedure are always pairwise.
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We calculate the anchor score of an LCB as the sum of its constituent pairwise local
alignment scores:

LebAnchor Score(L) = Z AnchorScore(M)

MeL

The weighted breakpoint penalty

As genomes diverge they may undergo genomic rearrangement. As a result, we must
identify alignment anchors that occur in a different order and orientation in each genome.
To complicate matters, spurious matches and matches among paralogs also frequently
occur in a different order and orientation in each genome. To ensure accurate alignment
anchoring we would like to filter out any local alignments that arise due to paralogous
segmental homology, in addition to any low-scoring spurious matches.

When computing LCB structure among a pair of extant genomes, we apply a break-
point penalty designed to account for the expected amount of genomic rearrangement
and gene flux that has occurred since their divergence. We define a matrix of breakpoint

penalties among each pair of genomes as

Wi,j = wB, ;C

1,J ]

where w is a user-defined minimum LCB score. Empirical evidence indicates that a
value of 30,000 gives high-quality estimates of LCB structure for our target data set (see
Figure 10, full data not shown). The software implementation sets w = 1500AvgSize(G)

by default, the value of which is approximately 30,000 for our enteric genomes.
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The sum-of-pairs anchoring score

Given a node n and set of pairwise LCBs among each cross-pair of the genomes at or
below nodes n.c; and n.co, we compute the sum-of-pairs anchoring score as

SP AnchorScore(n,L) = Z Z (|Lij| — D)W, Z LebAnchorScore(l)

Gi€Leaf(c1) GjeLeaf(c2) leL; ;

The sum-of-pairs + ancestral anchoring score

A second, optional LCB scoring scheme used by our method is the SP extant-+ancestral
score. 'This scoring scheme has been designed to also score pairwise LCB structure
between extant genomes and the sequence arrangement inferred at internal nodes of the
alignment tree.

When computing LCB structure for a node n in the alignment tree we apply a
weighted breakpoint penalty A, which is an average penalty among cross-pairs of de-
scendant genomes. Specifically, the values of A for each internal node n are defined

as

W,
A= D D Taftenlieaf @)

Gi€Leaf(c1) GjeLeaf(c2)

When n has only two leaf-node descendants, representing genomes G; and G, A,, is
identical to W, ;. To arrive at the SP extant-t+ancestral anchor score, we then modify

the original SP anchoring score to include score terms for internal nodes below n:

SP Ancestral AnchorScore(n) = Z Z (|Li ] —1)A; Z LebAnchorScore(l)

G;i€Des(c1) Gj€Des(c2) leL; ;
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Figure 11: Treatment of regions without alignment anchors. Pairwise alignments among
the two children nodes of an internal node are shown in dotplot format. Panels a-
d demonstrate processing of a large gap inside a single LCB. Panels e-h demonstrate
processing gaps between LCBs.
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5.2.4 Progressive anchored multiple genome alignment

Staring with the guide tree W, a set of local-multiple alignments M;,,;;o;, and a weighted
breakpoint penalty matrix W, the following algorithm computes a multiple genome

alignment among sequences in G:

1. Select the closest pair of unaligned nodes that have the same parent in W. We

refer to the unaligned nodes as c1, co and their parent as n.

2. Extract all precomputed pairwise matches between cross-pairs of genomes in Lea f(¢;)
and Leaf(cg) from M0 Local multiple alignments may be projected to pair-

wise alignments.

3. Translate pairwise matches among extant genomes into coordinates of ¢; and co,

call the resulting set of pairwise matches M,,. When cis a leaf node, the translation
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is trivial and match coordinates remain unchanged.

. Eliminate overlaps and resolve inconsistent alignments among matches in M, as

described in Darling et al. (2004a).

. Translate matches in M,, back down the tree to construct a set of local-multiple
alignments among Des(n), which we refer to as M. For every pairwise match in

M, a corresponding local-multiple alignment among Des(n) exists in M.

. For each cross-pair of genomes G;, G; in Leaf(c;) and Leaf(cz2), project the local-
multiple alignments in M, to their pairwise coordinates. Refer to the resulting set
of projected matches as M, ;. Each projected match retains a pointer to the

original ancestral match in M,, from which it came.

. Partition each set of pairwise projected matches M, ; into a set of pairwise Locally

Collinear Blocks L; ;
. Compute the current SP anchor score for n as SPAnchorScore(n,L)
. Perform sum-of-pairs greedy breakpoint elimination:

9.1. Remove the pairwise LCB that results in the largest improvement in
SPAnchorScore(n,L). When removing the LCB, remove all pairwise projected
matches in the LCB, and remove the corresponding matches in M,, and any other

associated projections in M, ;.

9.2. Removing the LCB may allow neighboring LCBs to coalesce. Recompute

scores for all neighboring LCBs.

9.3. Compute the new SP anchoring score SPAnchorScore(n,L). If the new
score is larger than the previous score, return to step 9.1, otherwise continue to

step 10.
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Pick arbitrary endpoints for LCBs in the breakpoint regions between LCBs (Fig-

ure 11 panel e).
Check whether the final SP anchoring score has improved. If not, go to step 14.

Recursive anchor search. Search for additional anchors in large gaps between
existing anchors and outside LCBs. Figure 11, panels a, b, and e, f illustrate the

recursive anchor search inside and outside LCBs, respectively.

Return to step 3. Use any matches identified by the recursive anchor search, in
addition to the matches that remained after greedy breakpoint elimination as input

to Step 3.
Pick an arbitrary gap path in unanchored regions (Figure 11 panels ¢ and g).

Perform an anchored profile-profile alignment using MUSCLE (Edgar, 2004) The
MUSCLE source code was modified to support anchored profile-profile alignment.
To limit compute time, we enforce a maximum distance between anchors of 20,000nt.
When we encounter a gap larger than 20,000nt between anchors, we add an anchor

point on the gap-path midway between the nearest existing anchor points.

If nodes remain to be aligned then return to Step 1, otherwise end progressive

alignment.

An example of sum-of-pairs greedy breakpoint elimination

Iterative refinement

We subject each aligned locally collinear block to an iterative refinement process us-

ing the MUSCLE sequence alignment tool. To reduce overall execution time, we use

window-based iterative refinement to restrict the total search space. In window-based



67

Initial local-multiple alignments among extant genomes 1,2,3,and 4.
A) Visualized with respect to each genome sequence

: A B C D E
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E
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4 A _(F B D
| )(H)(G

Scores: A = 5000, B=5000, C=5000, D=5000, E=1000, F=1000, G=1000, H=1000, |=1000

B) Visualized as a directed multigraph with a path representing the order in each genome
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Figure 12: Panel A: An initial set of local multiple alignments has been calculated
among four genomes, labeled 1-4. The chosen alignment guide tree is shown at left.
Each genome sequence is laid out horizontally and segments contained in local-multiple
alignments are depicted as blocks linked between genomes. Blocks below a genome’s
center line match the reverse complement strand in that genome. For simplicity we
assume that pairwise alignment scores are equal for all pairs of genomes and assume
the scores given above. Panel B: The local multiple alignments in A induce a directed
multigraph where each local multiple alignment is a node and edges connect alignments
that are adjacent in each genome. A path from source to sink vertex exists for each
of genomes 1-4, with edges labeled accordingly. Traversal of a given genome’s path
visits nodes in the order of the corresponding local-multiple alignments in that genome.
Negative edge labels indicate a switch in the strand matched by adjacent alignments.
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A) The anchor graph projected onto genomes 1 and 2 2
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B) Partitioning the anchor graph into Locally Collinear Blocks (LCBs)
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Figure 13: Panel A: The full graph shown in Figure 12 is projected to the subgraph
containing only edges labeled 1 and 2. We perform greedy breakpoint elimination on
this pairwise projection. Panel B: Pairwise LCBs among genomes 1 and 2 are identified
as nodes connected by “simple” paths, i.e. paths with edge labels 1,2, or singleton nodes
which have edges labeled with both 1 and 2 but are not part of any simple paths.
A cycle exists in the subgraph among nodes C, D, E, and F, and corresponds to a
putative genome rearrangement between genomes 1 and 2. The cycle partitions the
local multiple alignments into three LCBs: {AB}, {CD}, and {E} with scores 10,000,
10,000, and 1,000, respectively. F does not contribute to any LCB since it doesn’t
match in both 1 and 2. Each LCB score is equal to the sum of its constituent alignment
scores. Panel C: Pairwise anchoring of genomes 1 and 2. The anchoring score penalizes
the initial anchor configuration for two breakpoints, worth 1,500 each, for a total anchor
score of 10,000+10,000-+1,000-2x1,500 = 18,000. We then consider the effect of removing
each LCB on the anchoring score. Removal of {AB} would eliminate a single breakpoint
and result in a total anchor score of 9,500 because A and B no longer contribute 5,000
each to the score. Removal of {CD} would eliminate a single breakpoint, also giving a
total anchor score of 9,500. Removal of {E} would eliminate two breakpoints and give
a total anchor score of 18,500. We remove {E} because it improves the anchor score
from 18,000 to 18,500. We create the consensus alignment path shown in blue which
corresponds to the ancestor of 1 and 2 in the guide tree. The removal of E corresponds
to splitting the node into separate nodes per-genome (labeled E1 and E2) in the blue
consensus path.
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Figure 14: Panel A: Pairwise anchoring of genomes 3 and 4. The full graph shown
in Figure 12 is projected to the subgraph containing only edges labeled 4 and 5. The
inversion of matches G, H, and I in genome 4 induces three pairwise LCBs: {A}, {GHI},
and {FBD}, scoring 5,000, 3,000, and 11,000, respectively. Each of the two breakpoints
come with a penalty of 1,500, for a total anchoring score of 16,000. Removing any of
the three LCBs fails to increase the anchoring score, so the anchors remain identical to
the initial set of local alignments between genomes 3 and 4.

Pairwise alignment of genomes 3 and 4

refinement, the alignment is divided into non-overlapping windows, each of which is
refined separately. Figure 11 panels d and h show window-based iterative refinement
for a given alignment tree node n. Regions aligned with few gaps may be refined in
windows of 500 or 200 alignment columns. When a region of the existing alignment is
ambiguous, containing many gaps, we select a window size of 20,000 alignment columns.
The relatively large window size gives MUSCLE greater latitude in shifting gaps to iden-
tify optimal the alignment. These window sizes were chosen empirically to provide a

reasonable trade-off between speed and accuracy (data not shown).

Identification of segments conserved among two or more genomes

The MUSCLE global alignment program dutifully finds the highest-scoring alignment
between alignment anchors, regardless of whether the intervening region contains homol-
ogous sequence. Occasionally non-homologous regions become aligned as a side effect

of forced global alignment in regions between anchors. In order to identify and remove
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A) Pairwise projection and a single LCB among 1 and 3
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Figure 15: Panel A: The pairwise projection of the graph in Figure 12 to genomes 1 and
3 has no cycles or inverted segments, yielding a single LCB. The LCB has score 15,000
and since no breakpoints exist, the pairwise anchoring score for 1,3 is 15,000. Panel B:
The pairwise projection to genomes 1 and 4 also has a single LCB with score 15,000.
Panel C: The pairwise projection to genomes 2 and 3 has a cycle among nodes B, E,
and F. The cycle induces four pairwise LCBs: {A},{B},{D}, and {F} with scores 5,000,
5,000, 5,000, and 1,000 respectively. The initial anchor configuration is penalized for
three breakpoints, giving a total pairwise anchor score of 11,500. Panel D: The pairwise
projection to 2 and 4 also has a cycle inducing four LCBs. The pairwise anchoring score

for 2 and 4 is also 11,500.
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Final anchoring of genomes 1,2, 3,and 4
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Figure 16: To arrive at a final anchoring for genomes 1, 2, 3, and 4, we apply sum-
of-pairs greedy breakpoint elimination to the pairwise projections shown in Figure 15.
The projections 1,3 and 1,4 have no breakpoints, and thus no breakpoint elimination
can be applied. Projections 2,3 and 3,4 each have four LCBs. We compute the total SP
anchoring score as the sum of each pairwise anchoring score: 15,000 + 15,000 + 11,500 +
11,500 = 53,000. We then evaluate whether removal of any pairwise LCB would improve
the total SP anchoring score. We arbitrarily choose to consider LCBs from the 2,3 pro-
jection first. Removing {A} would result in a reduction from four to three breakpoints,
and a loss of the 5,000 points contributed by {A} to the projection of 2,3. Because we
impose transitive homology, we must also remove {A} from the pairwise projections 1,3
and 1,4 and 2,4 if we remove it from 2,3. Thus the total SP anchoring score with {A}
removed becomes 10,000+10,000+8,000+8,000=36,000. We do not remove {A} because
the SP anchoring score would decrease. Removing {D} has the same effect on the SP
anchoring score as removal of {A}. Next, we evaluate removal of the LCB {F}. Removal
of {F} would eliminate the cycle in the projection of 2,3, resulting in a single pairwise
LCB with score 15,000. Again, if {F} is removed from 2,3 it must also be removed
from all other pairwise projections, namely 2.4 (but not 3,4). The total SP anchoring
score after removing {F} would be 15,000+15,000+15,000+15,000=60,000. Finally, we
consider removal of {B} from projection 2,3. Removal of {B} also eliminates the cycle in
2,3 and would give a total SP anchoring score of 15,000415,000+11,000+11,000=52,000.
Because projections 2,3 and 2,4 have identical LCBs, we need not consider the score im-
pact of removing LCBs from 2,4. At this point, we remove the LCB which offers the
largest increase in the SP anchoring score: {F}. After removal of {F}, the SP anchoring
score can no longer be improved and we arrive at the final anchoring depicted above as
a gold-colored path. Notice that F does not form an anchor among genomes 2,3 and 2,4,
but it remains a valid pairwise anchor among 3,4 and is included in the golden path.
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aligned, non-homologous regions we apply random-walk statistics to the HOXD substi-
tution and affine gap score (Chiaromonte et al., 2002, Schwartz et al., 2003). Nucleotide
substitution scoring matrices are log-ratio estimates of the probability that a pair of
nucleotides are homologous, versus the probability they are non-homologous. The sub-
stitution and affine gap score are designed to assign high scores to homologous regions
and low scores to non-homologous regions. Random walk statistics require a score func-
tion that will be negative on average, however, aligned LCBs typically contain high
sequence identity, so the substitution score is a very large positive number on average.
Thus, we invert the log ratios and multiply the affine gap penalties by —1, which causes
homologous LCBs to have a negative score on average. We can then apply random walk
statistics to identify high-scoring segments indicative of a non-homologous region.

We performed simulation studies to select an appropriate significance threshold for
random-walk excursions. Specifically, we simulated molecular evolution among a pair
of sequences under the HKY85 model with 0.75 substitutions per site, Ts/Tv ratio—4,
gamma-distributed rate heterogeneity (shape=1), and 0.05 indels per site with lengths
sampled from a Poisson with intensity 3. These parameters were selected to be at
or beyond the outer limits of sequence alignable by our method. We performed 200
simulations of sequences with average length 1,000,000 nt. Scoring the simulations yields
42,429,635 excursions which indicate a 99.9% threshold score of 2727 in the extreme value
distribution, and a 99.99% threshold of 4076.

We identify boundaries of non-homologous sequence as regions where the score of a
random-walk excursion exceeds our score threshold. Given the boundaries of pairwise
segments likely to be non-homologous, we compute the complementary boundaries of

pairwise segments likely to be homologous. We then apply the notion of transitive
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homology (Szklarczyk and Heringa, 2004, 2006) by finding the union of all overlapping
pairwise homologous segments. We refer to the resulting segments as "backbone." The
regions complementary to the "backbone" are genome-specific "islands" of sequence

content. We unalign any aligned regions that lie outside a backbone segment.

5.3 Results

The Progressive Mauve alignment algorithm results in a multiple genome alignment
where any nucleotide is aligned to at most one other nucleotide. After filtration of
non-homologous segments, the remaining aligned regions are typically either mono-
topoorthologous (Dewey and Pachter, 2006) or xenologous (Fitch, 2000), and rarely
paralogous or non-homologous. In addition to predictions of homologous nucleotides,
Progressive Mauve predicts the endpoints of segmental homology among each pair of
genomes. Finally, the algorithm also predicts the boundaries of genome-specific se-
quence and sequence conserved in two or more of the genomes under study, which we

refer to as backbone sequence.

5.3.1 An alignment of enterobacteria

We apply the progressive genome alignment method to two groups of enteric bacteria:
a set of 12 E. coli and Shigella genomes (described presently), and a set of 9 genomes
of Enterobacteriacae (described in Chapter 8. The alignment of 12 E. coli genomes
consumes approximately 12 hours of computation and 6GB memory on an AMD Opteron
workstation. A visualization of the resulting alignment is shown in Figure 17. The final

alignment consists of 355 LCBs of minimum length 28, which constitute a total of 12.0
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Figure 17: An alignment of 12 E. coli genomes reveals 355 well-supported locally
collinear blocks and substantial amounts of lineage-specific sequence. Each genome
is laid out on a horizontal track. Colored blocks indicate segmental homology, with
lines connecting orthologous LCBs across genomes. Blocks shifted below a genome’s
center axis are in the reverse complement orientation relative to the reference genome.
Crossing LCB-connecting lines indicate that a rearrangement has taken place. The cir-
cular genome of E. coli E24377A, shown at bottom, appears to have been linearized
at a different point than the other genomes, resulting in a large number of crossing

LCB-connecting lines.
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Mbp of unique sequence. The E. coli appear to have undergone substantial amounts
of gene flux, and some isolates, particularly Shigella isolates, appear to be undergoing

rapid genome rearrangement.

5.3.2 Interactive visualization

We have developed an interactive visualization tool to assist exploration and interpreta-
tion of the alignments generated by our method. The Mauve visualization environment
enables inspection of multiple genome alignments at all scales, from a global display of
comparative genome architecture to detailed inspection of nucleotide substitution. As
shown in Figure 18, each aligned genome is displayed on a horizontal track composed
of a sequence similarity plot and annotated sequence features. The viewer reads and
displays annotated sequence features from GenBank format flat files using the BioJava
library. The sequence similarity plot shows segmental homology as round rectangles
(blocks), with an average sequence identity plot inside the rounded rectangle.

The height of the sequence identity plot reflects the average column entropy for
the region of the alignment covered by a column of display pixels. Specifically, the
similarity plot height is directly proportional to a similarity value s(.A,g,7) which we
define as follows. Consider the alignment A as a G x C' matrix, where each of the G rows
corresponds to a genome and there are C' columns. Each matrix entry is an element
in the alphabet {A,C,G,T,—}. To calculate the similarity for a given genome g € G,
we project A to the submatrix A : g, which is the submatrix formed by removing all
columns where the entry for genome g is a gap (—). The similarity value for position ¢

of g can then be calculated as:
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Figure 18: A detailed view of the hypervariable region between the genes mutS and rpoS
in E. coli K12. In the region between mutS and rpoS, several each taxa have acquired
an alternative set of non-homologous genes. We refer to such non-homologous genes
surrounded by conserved orthologous genes as alternalogs. A black rectangle outlines
the region containing alternalogs in the figure, and colors on the similarity plot indicate
the taxon groupings of segments that are conserved among two or more genomes. Most
importantly, mauve-colored segments are conserved among all taxa. The blue segments
are conserved among K12, HS, CFT073, UTI89, and E24377A. Goldenrod segments are
specific to the uropathogenic CFT073 and UTI89 isolates. Bright yellow segments are
conserved between EDL933 and RIMD, and alternatively S. sonnei and S. boydii. Light
green segments are conserved among the two S. flexneri, while medium green segments
are conserved between S. flexzneri, S. dysenteriae, EDL933, and RIMD. The observed
pattern of segmental homology appears to result from a combination of intraspecific
recombination and differential gene loss.
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where w is a constant sliding window size, defaulting to 5nt. The function count(a, A, g, )
counts the number of times character a occurs in column j of A : g. The function
H(A,g,j) effectively computes the Shannon entropy of alignment column j in the sub-
matrix A : g, with slight modification to consider each gap '—' as a different character.
This modification causes a column of all gaps or nearly all gaps to have high entropy,
implying poor sequence conservation. Without the modification, heavily gapped align-
ment columns would appear to be well conserved. When information about the location
of conserved “backbone” segments is available, we further modify the equations above to
compute similarity only on the subset of genomes in which the segment is considered to
be conserved. Finally, when a single display pixel covers a range of sequence coordinates

x ...y, we display the average similarity plot height for that pixel, computed as:

i sim(A, g,1)
=T y—x

It is worth noting that w may be set to 0 so that the display of average similarity
does not use sliding windows to smooth the similarity peaks. Numerous problems exist

with analyses based on sliding window methods, although for the type of exploratory

data analysis presented by the Mauve viewer, use of a sliding window should not pose a
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problem.

5.4 Discussion

Multiple alignments of genomes with rearrangement and lineage-specific sequence may
provide evidence for ancestral rearrangement events that are undetectable with pairwise
comparisons of extant sequences. The simplest scenario for which an ancestral rear-
rangement can be detected in a multiple alignment, but not among pairwise alignments
is shown for three genomes in Figure 19.

The alignments produced by our method serve as a foundation for further study into
all aspects of genome evolution. Both deterministic (Bourque and Pevzner, 2002, Tang
and Moret, 2003) and Bayesian (Miklos, 2003, Larget et al., 2002) methods for infer-
ence of genome rearrangement histories may directly use the LCB predictions as input.
A challenge exists, however, because such methods typically assume that orthologous
segments are present in all genomes under study. Alignments produced by Progressive
Mauve frequently contain segments conserved in only a subset of the organisms un-
der study, presumably due to differential gene loss or acquisition via lateral transfer.
Bayesian methods for inference of gene content evolution via loss and lateral transfer
have recently been proposed (Csuros and Miklos, 2006), but work remains to integrate
such models with a model of genome rearrangement.

In addition to supporting studies of genomic rearrangement, our multiple genome

alignments enable genome-wide study of recombination patterns and selective forces.
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Figure 19: Some genome rearrangement events may be undetectable using pairwise com-
parisons, but revealed through multiple genome comparison. The common ancestor (A)
of extant genomes C, D, and E has five genes, numbered 1 through 5. A transposition
occurs on the branch from A to C, but the transposition is not observable in pairwise
comparisons between C, D, and E due to differential gene loss. A simultaneous compar-
ison of C, D, and E reveals the rearrangement as a cycle in the alignment graph.

Several studies of recombination and selection among microbial genomes have been pub-
lished to date, however the majority have focused only on genic regions, ignoring impor-

tant non-coding sequence (Chen et al., 2006).
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Chapter 6

Evaluating alignment accuracy

Without a ‘correct’ alignment of the enteric genomes, the alignments calculated by
the previously described methods can not be evaluated for accuracy. Although several
benchmark data sets exist for protein sequence alignment (Thompson et al., 1999, Edgar,
2004), no such benchmark data sets exist for the genome alignment task. Construction
of an alignment accuracy benchmark would require manual curation of a whole-genome
multiple alignment that includes rearrangement and lateral gene transfer, a task that to
date has proven too time-consuming and difficult. Despite the lack of a manually curated
correct alignment, we can estimate the alignment accuracy by modeling evolution and
aligning simulated data sets.

The inferential power yielded by using simulated evolution to evaluate alignment
accuracy is only as strong as the degree to which the simulation faithfully represents the
evolutionary processes that produce naturally occurring genomes of interest. Keeping
that fact in mind, we constructed a simplistic model of genome evolution that we believe
captures the major types, patterns, and frequencies of events in the history of the enteric
genomes. Given a rooted phylogenetic tree and an ancestral sequence we would like to
generate evolved sequences for each internal and leaf node of the tree, along with a mul-

tiple sequence alignment of regions conserved throughout the simulated evolution. To
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effectively represent genome evolution, the simulation must include nucleotide substitu-
tions and indels in addition to genome scale events such as horizontal transfer, inversion,
and rearrangement.

Nucleotide substitutions are ostensibly the best studied and most ubiquitous muta-
tion process. We use the HKY85 (Hasegawa et al., 1985) model of nucleotide substitu-
tion implemented in the Monte-Carlo simulation package called Seq-gen (Rambaut and
Grassly, 1997). We apply a Transition/Transversion ratio of 4 and gamma-distributed
rate heterogeneity with shape parameter « = 1. Small insertions and deletions (in-
dels) are modeled as occurring with uniform frequency and distribution throughout the
genomes, with a size sampled from a Poisson distribution with mean value 3bp. When
studying the differences between E. coli O157:H7 EDL933 and K-12 MG1655 (Perna
et al., 2001), it became clear that a small number of horizontal transfers introducing
large regions of sequence have occurred, while the majority of transfers introduced small
sequence regions. Our model includes large horizontal transfer events uniformly dis-
tributed in length between 10Kbp and 60Kbp. The size of small horizontal transfer
events is sampled from a geometric distribution with mean value 200bp. Horizontal
transfer is implemented by simultaneously evolving a set of '"donor’ genomes from which
horizontally transferred sequence can be sampled.

Using the observation that two overlapping inversion events can result in a translo-
cation, our model does not explicitly implement translocation events. The length of
inversions are sampled from a geometric distribution with mean value 50Kbp. Loca-
tions for inversion and horizontal transfer events are sampled uniformly throughout the
genome, and all events are simulated to have taken place at a point in time given by

a marked Poisson process over the phylogenetic tree. Finally, genome size is expected
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to stay relatively constant over time, so deletion events are sampled with the same size
and frequency as events that introduce new sequence. Our implementation of the evo-
lutionary model described above is referred to as the simple genome evolver, or just

sgEvolver.

6.1 Alignment scoring

We score the calculated alignments against the correct alignments generated during the
evolution process. Previous studies of alignment accuracy have used a sum-of-pairs scor-
ing scheme to characterize the nucleotide level accuracy of the aligner (Thompson et al.,
1999, Darling et al., 2004a). The experiments presented here use sum-of-pairs scoring,
but we also define several new accuracy measures intended to quantify each alignment
system’s ability to detect segmental homology and predict breakpoints of genomic rear-
rangement. We treat nucleotide alignment accuracy more precisely by defining criteria
for True Positive, False Positive, and False Negative alignments, allowing us to charac-
terize both sensitivity (recall) and positive predictive value (precision) of each method.
A summary of the scoring metrics appears in Table 4 and full definitions follow.

For nucleotide-level alignment accuracy metrics, we classify each pair of nucleotides
aligned in a calculated alignment as either True Positive (TP), False Positive (FP), or
False Negative (FN). A True Positive is a pair of nucleotides aligned in the calculated
alignment that also appear in the correct alignment. A False Positive is a pair of nu-
cleotides aligned in the calculated alignment that is not found in the correct alignment.
A False Negative is a pair of nucleotides aligned in the correct alignment which were not

aligned in the calculated alignment. We do not quantify True Negative (TN) alignments,
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Nucleotide Sensitivity | TP / (TP + FN) The fraction of correctly aligned nucleotide
pairs in the calculated alignment.

The fraction of nucleotide pairs correctly aligned
Nucleotide PPV TP / (TP + FP) | in the calculated alignment, out of the total nucleo-
tide pairs aligned in the calculated alignment.

The fraction of LCBs in the correct alignment
LCB Sensitivity TP / (TP + FN) that had at least one correctly aligned pair of
nucleotides in the calculated alignment.

The fraction of LCBs in the calculated alignment
LCB PPV TP / (TP + FP) that had at least one correctly aligned
pair of nucleotides.

The distance between the predicted breakpoint
Breakpoint localization - of rearrangement and the true breakpoint
of rearrangement.

Table 4: A summary of the scoring metrics used to evaluate accuracy of genome align-
ments

as there are exponentially many TN possibilities.

We also quantify the ability of each aligner to correctly identify orthologous segmental
homology in the form of Locally Collinear Blocks (LCBs). For each possible pair of
genomes we measure whether the aligner finds LCBs among that pair, yielding a sum-
of-pairs LCB accuracy metric. When an aligner correctly aligns at least one pair of
nucleotides in an LCB, we consider the LCB as correctly found in the corresponding
pair of genomes (True Positive). Pairwise LCBs in the correct alignment which have
no correctly aligned pairs in the calculated alignments are considered not found (False
Negative). Any pairwise LCB in the calculated alignment that contains no correctly
aligned positions is considered to be a False Positive. As with the nucleotide accuracy
metric, there are exponentially many True Negative LCB predictions which we do not
report.

Finally, we quantify how well each aligner localizes the exact breakpoint of rear-

rangement. When an LCB is correctly predicted in the calculated alignment, we record
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the difference between the boundary coordinates of the correct LCB and those of the
calculated LCB. When the difference is negative, the calculated alignment has underpre-
dicted the boundary, i.e. the calculated LCB does not extend to cover the full region of
homology. A positive difference indicates an overprediction, where the calculated LCB
includes additional sequence beyond the end of the segmental homology. We report

mean, standard deviation, and quantile statistics for LCB boundary predictions.

6.2 Experiments

Using the simple genome evolver, we designed and executed experiments to compare the
performance of several genome alignment systems under a variety of mutational regimes.
Multiple alignment experiments used a phylogenetic guide tree estimated for a group of
nine F. coli, Shigella, and Salmonella, midpoint rooted to provide an entry point for the
ancestral sequence. Figure 20 shows the topology and branch lengths of the tree used
for our simulation studies. Rather than generate a random ancestral sequence, we used
DNA randomly sampled from an enteric genome in order to preserve the distribution
of sequence motifs and repetitive subsequences found in naturally occurring genomes.
Additional enteric DNA was sampled for use as a donor sequence pool for insertion and
horizontal transfer events. Both samplings are without replacement, i.e. the ancestral
target sequence and the ancestral donor sequences are never identical to each other.
We processed all evolution simulations and genome alignments using the Condor
high throughput computing environment at the University of Wisconsin. The Wiscon-
sin Condor cluster contains over 1000 compute nodes and allowed us to rapidly align

thousands of simulated data sets.
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Figure 20: A phylogenetic tree relating the nine enteric genomes studied in Chapter 4.

The tree was calculated using Neighbor-Joining on a genome-content distance metric.
The unrooted tree has been midpoint-rooted for simulation studies.

6.2.1 Experiment: genomes without rearrangement

Our first experiment compared the ability of the original Mauve, Multi-LAGAN version
1.2, Mavid version 0.9, Mauve 1.3.0, and Progressive Mauve to align collinear sequences
that had undergone increasing amounts of nucleotide substitution and indels. This ex-
periment is designed to test the sensitivity of the anchoring methods employed by each
aligner. We simulated evolution of nine genomes at 20 increasing nucleotide substi-
tution rates and 20 increasing indel rates, performing 3 replicate experiments of each
combination of substitution rate and indel rate.

Each aligner’s average sensitivity for each simulation is displayed in Figure 21. From
the figure, it is obvious that the original Mauve implemention’s alignment score drops
precipitously in the presence of an increasing substitution rate. The improved version
of Mauve which uses approximate multi-MUM anchors (versions 1.0 and later) performs
substantially better than the original Mauve, but still falls short of Mavid and Multi-
LAGAN at high mutation rates. We attribute this behavior to Mauve’s requirement
that the multi-MUM anchors be present in all genomes under study. Multi-LAGAN’s

alignment anchors can contain substitutions and indels, and must only align pairs of
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Figure 21: The sensitivity of Mauve(1), Multi-LAGAN(2), Mavid(3), Mauve 1.3.0 with
spaced seeds(4), and Progressive Mauve(5) when aligning sequences evolved with in-
creasing amounts of nucleotide substitution and indels. The exact match anchoring
technique employed by the original Mauve implementation limits its ability to align dis-
tantly related sequences. The more recent Mauve 1.3.0 implementation uses approximate
multi-MUMs as alignment anchors, and performs substantially better. Multi-LAGAN
version 1.2 did not complete the alignments of genomes without indels, resulting in the
black row at the bottom. The performance of Progressive Mauve is comparable to that
of Multi-LAGAN and Mavid 0.9, outperforming these methods for certain combinations
of indel and substitution rate. The thin blue line indicates the combination of indel
and substitution rates that were subsequently used for tests measuring aligner robust-
ness to inversion (Figure 24). The asterisk(*) indicates the combination of indel and
substitution rates used for tests measuring aligner robustness to gene flux (Figure 25).
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genomes, making them much more sensitive. Mavid appears to perform better than
Multi-LAGAN at very high mutation rates, probably owing to its method of inferring
ancestral states along a phylogeny and using those to compute alignment anchors. Pro-
gressive Mauve uses a progressive alignment anchoring approach, allowing it to utilize
anchors present in as few as two genomes. The progressive approach provides a substan-
tial boost in anchoring sensitivity and the performance of Progressive Mauve is similar
to that of Mavid and Multi-LAGAN. For the nucleotide substitution and indel rates
previously reported in the enteric data set, Mauve aligns the simulated genomes with a
high degree of sensitivity.

We do not report LCB accuracy metrics for this experiment because the genomes

were evolved under a model that did not include genomic rearrangement.

6.2.2 Experiment: pairs of genomes with rearrangement

We proceeded to gauge the ability of the original Mauve implementation and Shuffle-
LAGAN version 1.2 to align sequences that had undergone increasing amounts of in-
version and nucleotide substitution. Because Shuffle-LAGAN is a pairwise aligner, we
reduced the number of taxa in our simulation from 9 to two. Three simulations were per-
formed for each of 110 combinations of nucleotide substitution rate and inversion rate.
The average nucleotide sensitivity of Mauve and Shuffle-LAGAN for each experiment are
shown in Figure 22. Special considerations must be taken when scoring Shuffle-LAGAN.
Because Shuffle-LAGAN attempts to identify and align both orthologous and paralogous
regions but does not distinguish orthology from paralogy, a single residue in the first
genome can be ambiguously aligned to multiple residues in the second genome. For

the purpose of scoring Shuffle-LAGAN, we award points for correctly aligned nucleotide
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Figure 22: The performance of Mauve(left) and Shuffle-LAGAN(right) when aligning
two sequences evolved with increasing amounts of nucleotide substitution and inversions.
Mauve is clearly more accurate than Shufle-LAGAN at lower substitution rates. Shuffle-
LAGAN version 1.2 did not complete some alignments without rearrangements, resulting
in black entries. The rate of substitution and inversion observed between E. coli and
Salmonella is denoted by an asterisk(*).

pairs if the pair appears in anywhere in the alignment, even if the positions have been
aligned to other, non-orthologous residues.

The experiment shows that the original Mauve implementation clearly excels at align-
ing rearranged sequences under lower substitution rates that do not hamper its anchoring
process. Interestingly, Shuffle-LAGAN appears to perform better as the substitution rate
increases. Based on our experience, we conjecture that this counter-intuitive result is re-
lated to the repetitive nature of the ancestral enterobacterial sequence. Shuffle-LAGAN
appears to have difficulty selecting anchors in repetitive sequences. As the nucleotide
substitution rate increases, regions that were repetitive are randomly mutated and thus
no longer repetitive. Anchoring its alignment in unique subsequences provides Mauve
with immunity to this phenomena.

We do not report LCB scoring metrics for this experiment because Shuffle-LAGAN

does not distinguish between orthologous and paralogous segmental homology.



89

[ee]
=k
100
— 8-
- 80 + q>) -
S w0
S -
= T
3 o *
< > 8-
240 S
(&) © .
£
o 20 o, ‘ ‘ ‘ ‘
< 0 175 350 525 700
0 Small HT Events

Figure 23: The performance of the original Mauve implementation when aligning se-
quences evolved with rates similar to those observed among a group of E. coli and
Salmonella genomes. In this experiment, the substitution, indel, and inversion frequen-
cies were held constant while the rates of small and large gene flux were modulated. The
asterisk denotes the combination of large and small gene flux rates observed expected
between E. coli and Salmonella. As the rate of large horizontal transfer increases the
amount of lineage-specific sequence relative to backbone grows. Because Mauve can not
align large lineage-specific regions the alignment sensitivity score drops. When scored
only on regions considered backbone sequence the sensitivity is consistently above 98%.

6.2.3 Experiment: enterobacteria-like genomes

Our third set of experiments sought to evaluate the ability of Mauve to align genomes
similar to the enterobacteria. Evolutionary rates for the simulation were extrapolated
from previously published observations of the differences between E. coli K-12 MG1655
and O157:H7 EDL933 (Perna et al., 2001). For these two E. coli, there are about 75,000
observed nucleotide substitutions, about 4,000 observed indels, 40 large horizontal trans-
fer events, 400 small horizontal transfers, and one inversion. The observed frequencies
were converted to rates used to assign event frequencies to branches of the phylogenetic
guide tree. It is known that among the group of enterobacteria, the Salmonella have
higher rates of inversion and rearrangement than the E. coli. To compensate, the inver-
sion rate was adjusted to result in approximately 30-40 inversion events. When varying

the substitution and indel rates between 0 and 125% of the observed rates while holding
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horizontal transfer and inversion rates constant, Mauve alignments consistently aver-
age 80% sensitive, + 5% (data not shown). The quality of alignment does not appear
to drop as the substitution and indel rates are increased in this range. Rather, it ap-
pears that horizontal transfer rates have a more significant impact on alignment quality.
As horizontal transfer rates increase, the ratio of lineage-specific sequence to backbone
sequence increases and Mauve’s alignment algorithm aligns decreasing amounts of the
total sequence. When varying simulated horizontal tranfser rates between 100 and 200%
of previously reported rates for the enterobacteria, Mauve consistently aligns with about
65% sensitivity (Figure 23). When scored only against regions of the simulated genomes
considered as conserved backbone, Mauve consistently aligns with >98% sensitivity.
For the purpose of scoring the alignment, we define backbone as a region in the correct
alignment containing more than 50 gap-free columns without stretches of 50 or more
consecutive gaps in any single genome sequence. Based on our simulations we believe
the original Mauve alignment method accurately aligns regions conserved among all

genomes under study, however, significant lineage-specific regions remain unaligned.

6.2.4 Experiment: high rates of rearrangement

We assessed the relative performance of Mauve 1.3.0 and Progressive Mauve when align-
ing genomes with high rates of genomic rearrangement and nucleotide substitution. We
performed three replicates of simulated evolution at 10 increasing substitution rates and
10 inversion rates. In addition to quantifying sum-of-pairs nucleotide sensitivity, we also
quantified positive predictive value and LCB accuracy on this data set. The results,
shown in Figure 24, indicate that Progressive Mauve can accurately align genomes with

substantially higher rates of rearrangement than previous Mauve implementations.
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6.2.5 Experiment: high gene flux rates

Some bacteria have been demonstrated to rapidly acquire novel gene content from other
microbes (Friedrich et al., 2001, Hsiao et al., 2005), thus we would like to know how well
our alignment methods perform in the face of substantial acquisition and loss of genetic
material (gene flux). We characterized the accuracy of Mauve 1.3.0 and Progressive
Mauve when aligning genomes simulated to undergo high rates of both small- and large-
scale gene flux, in addition to modest rates of substitution, indels, and rearrangement.
We use an ancestral sequence of 500,000nt.

The results, shown in Figures 25, indicate that the algorithm used by Mauve 1.3.0
falters when faced with large-scale gene flux, while Progressive Mauve performs sig-
nificantly better. Both Mauve and Progressive Mauve tolerate the small-scale gene
flux—modeled here as insertions and deletions of sequence with geometrically distributed
average lengths of 200nt. As the rates of gene flux increase, the probability that any
given pair of genomes share orthologous sequence deteriorates and eventually reaches

zero in the limit of an infinitely high rate of gene flux.

6.3 Simulated phylogenetic ladders

A common experimental design in comparative genomics studies involves sequencing
the genomes of a group of organisms believed to have a phylogenetic relationship that
approximates a so-called phylogenetic ladder (Clark et al., 2003, Thomas et al., 2003).
Such experimental designs typically aim to identify genomic regions that are conserved
at increasing levels of sequence divergence. A benefit of sequencing phylogenetic in-

termediates in a ladder-type experiment is that multi-genome comparisons may allow
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nucleotide homology to be identified among pairs of organisms that are too divergent
for pairwise comparison.

We attempt to gauge the ability of our alignment algorithm to exploit additional
information available by sequencing phylogenetic intermediates between two divergent
organisms. Beginning with two divergent taxa (a and ¢ in Figure 26), we simulate
genome evolution with rearrangement, horizontal transfer, nucleotide substitution, and
indels. The sensitivity of our method in aligning the pair of simulated genomes for a
variety of branch lengths is given in Figure 27A. We then add a single taxon which
evenly splits the branch from the root to taxon a and evaluate the alignment sensitivity.
We continue by repeatedly adding taxa at points which evenly divide the previous taxa
into a phylogenetic ladder with increasing resolution. The alignment sensitivity results
for ladders with 0, 1, 3, 7, and 15 taxa in addition to a and ¢ are shown in Figure 27.

Rather than evaluate alignment sensitivity among all taxa, we evaluate sensitivity
only among genomes a and ¢. The pairwise measurement allows us to inspect whether
adding intermediate rungs on the phylogenetic ladder allows our algorithm to climb
higher than otherwise possible. The results suggest that in general, Progressive Mauve
can produce substantially better alignments when given additional sequence information

for intermediate taxa.

6.4 Discussion

The simulation studies reveal several important features of current genome alignment
algorithms. In the absence of genomic rearrangement, aligners such as MAVID, Multi-

LAGAN, and Progressive Mauve offer comparable performance and are able to align
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extremely divergent genomes, up to .75 average substitutions per site in our study.
When significant amounts of gene flux or rearrangement have taken place, the multiple
genome alignments computed by Progressive Mauve offer an unprecedented level of ac-
curacy. Progressive Mauve outperforms both Mauve and TBA for nucleotide-level align-
ment and outperforms Mauve for detection of LCBs indicative of orthology or xenology.
Progressive Mauve’s ability to accurately localize the breakpoints of genomic rearrange-
ment should permit automated study of sequence patterns (such as repeats or mobile

elements) associated with genomic rearrangement.
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Figure 24: Accuracy of Mauve 1.3.0 (first row), Progressive Mauve (second row), and
TBA (third row) when aligning genomes with increasing amounts of nucleotide substi-
tution and inversions. The inversion rate increases along the y-axis and the substitution
rate increases along the x-axis. Colors indicate a percentage scale ranging from 0%
(black) to 100% (white). Progressive Mauve clearly outperforms Mauve 1.3.0 and TBA
over the entire space of mutation rates. We do not report LCB accuracy for TBA be-
cause it does not identify monotoporthologous LCBs. The lower portion of the figure
illustrates the ability of Mauve and Progressive Mauve to localize the breakpoints of
rearrangement. For correctly predicted LCBs, the absolute distance between the pre-
dicted breakpoint and true breakpoint is recorded. FEach cell is a composite of five
values, showing the min, first quartile, median, third quartile, and maximum error in
breakpoint localization. The entirely white cells in the bp localization results for Mauve
1.3.0 occur when Mauve 1.3.0 makes no LCB predictions at all, thus achieving perfect
positive predictive value. The black cells in Progressive Mauve indicate runs which did
not complete.
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Figure 25: Accuracy of Mauve 1.3.0 (first row) and Progressive Mauve (second row)
when aligning genomes with increasing amounts of small-scale and large-scale gene flux.
The y-axis gives the average number of large gene flux events between the most distant
taxa shown in Figure 20. The z-axis gives the average number of small gene flux events
between the most distant taxa. Colors indicate a percentage scale ranging from 0%
(black) to 100% (white). The substitution rate and indel rate were fixed at the combi-
nation indicated by the asterisk in Figure 21. The inversion rate was set to a value which
results in 42 average inversions among the most distant taxa. Progressive Mauve clearly
outperforms Mauve 1.3.0 and TBA over the entire space of mutation rates, although all
methods tend to break down in the face of substantial large-scale gene flux. Again, we

do not report LCB accuracy for TBA because it does not identify monotoporthologous
LCB:s.
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Figure 26: Phylogenetic ladder used for alignment accuracy profiling. The initial tree
includes the two thick solid black branches connecting nodes a and ¢q. We then add
dashed black branches, solid grey branches, dashed grey branches, and finally thin black
branches for the experiments in Figure 27 labeled B, C, D, and E, respectively. The
sequence of branch additions corresponds to starting with two divergent genomes, and
repeatedly sampling the genomes of phylogenetic intermediates. Thus, the first tree has
two taxa, the second has three, third has five, fourth has nine, and fifth has seventeen.
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Figure 27: Accuracy of Progressive Mauve when aligning data simulated according to
a phylogenetic ladder. As the number of taxa sampled increases the quality of the
alignment generally increases, indicating that the aligner effectively exploits additional
sequence information. Alignment quality deteriorates at high mutation rates even when
a large number of taxa are sampled until a and ¢ become unalignable at 1.48 average
substitutions per site. Substitutions were sampled according the the HKY85 model with
a Ts/Tv ratio of 4 and gamma-distributed rate heterogeneity with shape=1. Indels were
sampled at a rate equal to 5% the rate of nucleotide substitution, and no rearrangement
or gene flux was modeled. We performed five replicates of each experiment, and the
average pairwise sensitivity of alignments among sequences a and ¢ was measured. The
data set with the highest average sensitivity at each mutation rate is labeled with a blue
star.
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Chapter 7

Detecting homologous recombination

in genome alignments

7.1 Introduction

The role of lateral gene transfer (LGT) in shaping prokaryotic genomes has been the sub-
ject of intense investigation and debate in recent years (Milkman, 1997, Daubin et al.,
2003, Feil et al., 1999, Spratt et al., 2001, Gogarten et al., 2002, Lawrence and Hen-
drickson, 2003, Lerat et al., 2003, Ochman et al., 2005, Ge et al., 2005, Beiko et al.,
2005). In the pre-genomic era, the handful of examples of LGT were detected pri-
marily as discordance between phylogenetic reconstructions with different housekeeping
genes (Dykhuizen and Green, 1991, Bowler et al., 1994, Suerbaum et al., 1998, Reid et al.,
2000). The explosion of publicly available bacterial genome sequences, coupled with the
development of whole-genome comparison tools (Carver et al., 2005, Kurtz et al., 2004a,
Darling et al., 2004a), initially focused LGT discovery on genome-wide scans for is-
lands of sequences specific to particular lineages of bacteria (for example, (Perna et al.,
2001, Parkhill et al., 2001, Tettelin et al., 2005, Hsiao et al., 2005)). Most recently,
phylogenetic approaches are applied to detect LGT among genome-wide sets of putative

orthologs (Daubin et al., 2003, Ge et al., 2005, Beiko et al., 2005). Together, these studies
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point to low, but detectable, levels of LGT among distantly related species with occa-
sionally higher rates found among organisms that occupy similar environments. Closely
related organisms show higher levels of LGT, with intraspecific comparisons showing the
highest levels. Two limitations of these analyses are the lack of phylogenetic resolution,
particularly among intraspecific comparisons, and the reliance on annotated boundaries
of genes in delineating candidate regions.

Statistical and phylogenetic methods have been developed for detecting recombina-
tion in aligned sequences of single genes or relatively short genomic segments. One
general approach, referred to as nucleotide substitution distribution methods in (Posada
et al., 2002), assesses atypical clusters of nucleotide differences. Clusters come in two
flavors: groups of polymorphisms exhibiting the same topologically discordant pat-
tern (Graham et al., 2005, Stephens, 1985), or an elevated rate of mutation in a single
lineage across a segment of the alignment (Maynard Smith, 1998, Qiu et al., 2004,
Sawyer, 1989, Worobey, 2001). The former indicates recombination between compared
strains, while the latter implies a recombination with some unknown, more divergent,
strain. Phylogenetic methods are most often applied in the context of detecting re-
combination break points in sequence alignments (Grassly and Holmes, 1997, Husmeier
and McGuire, 2002, McGuire and Wright, 2000, Minin et al., 2005). These methods
require longer alignments, are computationally intensive, and have reportedly been out-
performed by substitution distribution methods on simulated test data (Posada and
Crandall, 2001).

Genome-scale analyses of lateral transfer events have typically relied on identification

of incongruent tree topologies from phylogenetic analyses of sets of putative orthologous
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genes identified by reciprocal BLAST analyses (Lerat et al., 2003, Ge et al., 2005, Ray-
mond et al., 2002). This approach can be confounded by errors associated with BLAST,
such as false-positive orthologs, is limited to identifying recombination events that oc-
cur within gene boundaries, and is unlikely to identify short recombined regions within
genes.

Recently, a Markov clustering algorithm was used to partition orthologous pairs
of genes, determined by an all-versus-all BLAST comparison of 144 fully sequenced
prokaryotic genomes, into maximally representative clusters (Beiko et al., 2005, Harlow
et al., 2004). Bayesian phylogenetic analysis (for example, (Mau et al., 1999, Ronquist
and Huelsenbeck, 2003)) was applied to each cluster of four or more taxa to infer lateral
gene transfer against the background of a consensus ’supertree’ of sequenced bacteria.
This approach is most successful in determining global pathways of gene transfer between
phyla and divisions of prokaryotes, where homologous recombination is unlikely to have
played a significant role. Rather, these likely arise as illegitimate recombination events.

Here, we develop a method to detect segments of closely related genomes that have
been replaced with a homologous copy from another conspecific lineage, that is, an allelic
substitution. The method is not designed to detect non-homologous sequences that
may have accompanied a homologous recombination event or homologous recombination
events involving identical alleles.

The method compiles a list of polymorphism sites from a whole-genome multiple
alignment, then applies score functions to locate clusters discordant with the predomi-
nant phylogenetic signal. Identified clusters can cross gene boundaries and non-coding
sequence. QOur use of extreme value theory furnishes us with a statistically defensi-

ble criterion to assess significance of these clusters in much the same manner as the
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Karlin-Altschul statistics help interpret BLAST results (Altschul et al., 1990, Karlin
and Altschul, 1990).

We apply the recombination detection method to the published genome sequences of
several E. coli (Perna et al., 2001, Blattner et al., 1997, Jin et al., 2002, Wei et al., 2003,
Hayashi et al., 2001, Welch et al., 2002). Construction of a multiple whole genome align-
ment facilitates a global survey of recombination among these E. coli isolates. Genome
sequences must first be partitioned into locally collinear blocks (LCBs) - regions without
rearrangement. Most LCBs contain lineage-specific sequence acquired through lateral
gene transfer or differential gene loss. To further complicate matters, non-homologous
sequences from different organisms can integrate into different lineages at a common
locus (Perna et al., 2001). In a previous work, we developed a software package called
Mauve (Darling et al., 2004a) that can construct global multiple genome alignments
in the presence of rearrangement and lineage-specific content. The Mauve alignments
provide a convenient starting point for locating polymorphic patterns indicative of in-

traspecific recombination, which we call allelic substitution.

7.2 Results

As seen in Figure 28, the Mauve genome aligner takes the four E. coli and two Shigella
flexner: genome sequences and returns 34 local alignments spanning 3.4 Mb of ho-
mologous sequence common to all strains. The majority of rearrangements occur in
Shigella genomes where inversions between copies of repetitive elements are relatively
frequent (Blattner et al., 1997).

Computer-assisted screening of the Mauve output finds 733 problematic intervals
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Figure 28: A multiple whole-genome alignment of six strains consists of 34 rearranged
pieces larger than 1 kb. Each genome is laid out horizontally with homologous segments
(LCBs) outlined as colored rectangles. Regions inverted relative to E. coli K-12 are
set, below those that match in the forward orientation. Lines collate aligned segments
between genomes. Average sequence similarities within an LCB, measured in sliding
windows, are proportional to the heights of interior colored bars. Large sections of white

within blocks and gaps between blocks indicate lineage-specific sequence.
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’ Bipartition (split) ‘ Pattern KOOCS ‘ Number of SNDs ‘ Relative frequency ‘
((KSSOO0)C) 111211 50,354 38.73
((KSSC)00) 122111 19,678 15.14
(KOOC)SS) 111122 18,490 14.22
((KSSO0)C) 111211 14,115 10.86
((KSS)(00C)) = KS 122211 0,882 7.60
((KOO)(SSC)) = KO 111222 6,890 5.30
((KC)(0O0SS) = KC 122122 5,874 152

Table 5: Common single nucleotide differences have two alleles. Each such nucleotide
difference separates the six genomes into two classes. Pattern codes are represented as 6-
tuples of ones and twos (for allele 1 and allele 2) in the following order: (K) E. coli K-12
MG1655, (O) E. coli O157:H7 EDL933, (O) E. coli O157:H7 Sakai strain RIMD0509952,
(C) E. coli CFT073, (S) Shigella flexneri 2A 301, and (S) Shigella flexneri 2A 2457T.
By convention, K-12 is always allele one. For brevity, key groupings are denoted as KS,
KO, or KC. The remaining 3.6% SNDs come in over 50 different patterns, including
one quadripartition. See Appendix 1 in additional data file 1 of Mau et al. (2006) for
additional frequencies.

inside LCBs in which base pairs do not properly align because of gaps created by lineage-
specific sequence and/or attempts to align non-homologous sequence. Deleting these
intervals from the alignment yields 130,008 high quality base pair differences. Common
bipartitions, constituting 96.4% of all such differences, are listed in Table 5.

We use the term ’single nucleotide difference’ (SND) to describe the partition struc-
ture at a variable site in the alignment. A representative 100 base-pair (bp) segment of
the 3.4 Mb alignment is presented in Figure 29 for illustrative purposes.

All but 2% of variable sites are bi-allelic, meaning each site splits six strains into two
groups, called a bipartition. Nearly 80% of the bi-allelic SNDs have a minor allele unique
to the CFT, K-12, O157:H7, or S. flezner:i lineage. The remaining bi-allelic SNDs divide
the lineages into three alternative pairings of sister taxa, giving rise to three alternative
unrooted tree topologies denoted as: ¥xg (K-12 with S. flexneri, CET with O157:H7);

ko (K-12 with O157:H7, CFT with S. flexneri); and ¥ ke (K-12 with CFT, O157:H7
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START CDS mutS
AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAARATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAGGCTGARAGCCCAGCATCC K-12 MG1655
AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC O157:H7 EDL933
AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAARAGCCCAGCATCC Q157:H7 Sakai
AACATCAGGGAGCCGGACTTAACCCCATGAGTACAATAGAARATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGARAGCCCAGCATCC CFT073
AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAARATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGARAGCCCAGCATCC S, flexneri 2A 301
AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAARATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGARAGCCCAGCATCC S flexneri 2A 2457T
2855097~ 2855107~ 2855117~ 2855127~ 2855137~ 2855147~ 2855157~ 2855167~ 2855177" Coordinates in K-12

1 1 1 1 1

Figure 29: Small sample segment of the alignment spanning the start of the mutS gene
(denoted in blue). Location of a mismatch is indicated by the integer "1’ along the bottom
row. Five columns contain SNDs: TTTCTT, AAAGAA, AAATAA, GGGAGG, and
GAAAAA. The first four share the same bipartition pattern (111211) and are deemed
equivalent, even though one of them results from a transversion. The fifth SND is
considered distinct based on its bipartition despite having the same mutation (A to G)
found in the second SND.

=~ KS random walk
=~ KO random walk

-50,000

KC random walk

-150,000
1 1

Cumulative scores

—250,000
L

T T T T T
0Mbp 1 Mbp 2Mbp 3Mbp 4Mbp

E.coli K-12 genome coordinates

Figure 30: Three excursions (KS, KO, and KC) spanning the alignment with K-12
MG1655 as reference genome. The KS random walk plot, representing the dominant
clonal topology, decreases more gradually than do the two other plots. Excursions for
the discordant topologies (patterns KO and KC) run parallel to one another, except in
a 100 kb region at 2 Mb where KO abruptly increases. Parallel flat gaps common to all
three plots reflect K-12 lineage-specific sequence.
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with S. flexneri).

The four lineages serve as operational taxonomic units (OTUs) in our study of allelic
substitution in FE. coli. When nucleotides at a polymorphic site exhibit a partition
structure explainable by a single point mutation, the induced bipartition is said to
be compatible with the enabling topology. Bipartitions labeled KS, KO, and KC in
Table 5 are compatible with the topologies ¥ ks, ¥ ko, and i, respectively. Note that
frequency of the KS pattern exceeds that of each of its competitors by 3,000 SNDs,
thus certifying 1xs as the ’species’ topology. The elevated frequency of SNDs unique
to CFT roots topology ¥xs as (((KS)O)C). The 102,000 topologically uninformative
lineage-specific SNDs nevertheless provide information that our method uses to assess
recombination.

We define three complementary score functions that discriminate between KS, KO,
and KC patterns. Each of these score functions assigns an integer value to each SND
pattern. Moving across the chromosome of reference strain MG1655, we keep a cumula-
tive sum of the scores assigned by each function to consecutive SNDs in the alignment.
Graphical representations of cumulative scores, called random walk plots or excursions,
can reveal large-scale variations in feature composition. Excursions for each of the three
topologies are plotted concurrently in Figure 30.

A large phylogenetic anomaly appears midway through the alignment. Magnification
of a 100 kb segment between 1.95 and 2.1 Mb reveals a core 40 kb region in which KO
SNDs are the dominant pattern of substitution, flanked by transitional regions for which
Yo serves as the 'gene tree’ as well.

Global random walk plots highlight grossly deviant regions. In this alignment, a

solitary segment stands out. All other regions appear indistinguishable from one another



106

in Figure 30. Unless stated to the contrary, DNA sequence and genes from the large
atypical region (from sdiA to gnd) are excluded from further computations (a separate
analysis of this region is included in Appendix 2 of additional data file 1 of Mau et al.

(2006)).

7.2.1 Local variation in phylogenetic signal

In Figure 30, clusters of like patterns labeled KS, KC, or KO generate tiny, imperceptible
bumps in the corresponding random walk plots. Examined at higher resolution (data
not shown), they can be seen to punctuate each excursion. However, manual scanning
of high-resolution random walk plots is tedious, time consuming, and error-prone. In
Materials and methods, we describe an alternative strategy that automatically scans for
clusters at the local level.

The score functions generating Figure 30 are designed to elicit large positive local
scores (differences in cumulative scores evaluated at nearby positions) whenever clusters
of like, topologically informative, patterns are encountered. When that local score ex-
ceeds a predetermined threshold, the interval between the delimiting SNDs is declared
a high scoring segment (HSS). The strategy behind this scheme is exactly analogous to
BLAST (Altschul et al., 1990), in which high scoring segments denote probable homology
between the query and one or more reference sequences.

When two lineages share a nucleotide that is not the result of a single mutation in
a common ancestor, a homoplasy is said to have occurred. Homoplasies arise either
through multiple mutations at a common site (convergent evolution) or recombination.
The former tend to be distributed randomly about an alignment, whereas a recombina-

tion event typically produces a cluster of nucleotide differences at nearby sites exhibiting
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the same SND pattern. Our approach identifies such clusters of nucleotide differences
with a common phylogenetic partitioning pattern. Variability in mutation rates and
patterns in different chromosomal regions and bacterial lineages might also lead to phys-
ical clustering of similar substitutions. Although the clustering of sites with similar
patterns strongly suggests homologous recombination between lineages, we cannot rule
out the possibility that some clusters arise by independent mutation-driven processes.
Simple score functions alone cannot distinguish between these two possibilities, though
the latter is believed to be relatively rare.

Our method relies on the relative intensity of particular SND patterns (the one of
interest versus all others) to measure cluster formation, rather than the absolute number
of SNDs in any given fixed length segment of the alignment. As a result, local mutational
intensity is factored out of the analysis. We assert this is legitimate provided the overall
rate of mutation is not too great, and local deviations from that average are not severe.
A more detailed study is presented in Appendix 5 of additional data file 1 in Mau et al.
(2006). Random SNDs can and do form clusters of identical patterns simply by chance.
Given the number of SNDs and their relative frequencies within the alignment, we wish
to distinguish 'bumps’ that are too large to have occurred by chance.

Here again, BLAST statistics (Karlin and Altschul, 1990) serve as the model for
assessing significance. Random walk theory provides the tools for assessing high scoring
segments, and the corresponding extreme value distributions (EVDs) guide selection of
appropriate thresholds. Random walks (as opposed to random walk plots) are stochastic

processes operating under a fixed set of probabilities at each stage.
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Figure 31: The KS local random walk plot showing homologous recombination in the
tryptophan (¢rp) operon. Genes are rectangular boxes positioned above or below the axis
based on transcribed strand. KS SNDs form two non-overlapping MSCs with significant
local scores exceeding 170. Both MSCs, with a combined length under 2 kb, are contained
in a single 6.5 kb HSS covering most the trp operon. The positions of each KO, KC,
and KS SND in E. coli K-12 are shown above the KS excursion. Random walk values
below 50 are not plotted, resulting in the absence of visible KC or KO excursions.

In the Materials and methods section, we apply the relevant theory to derive thresh-
olds. Using the appropriate extreme value distribution as an arbiter, we chose a signifi-
cance threshold of 170 for clusters of KS SNDs and the same value of 100 for both KO
and KC, as their frequencies are nearly identical outside the large atypical region (4.85%
versus 4.57%). These thresholds define 186 high scoring segments that span 7.5% of the
sequence alignment. A breakdown by pattern and range of scores is arrayed in Tables 2
and 3.

We deviate from BLAST protocols in one important respect: a high scoring segment
maximizes the local score, which is the primary goal of sequence alignment. Here,
we want to isolate sub-regions within an HSS that individually exceed the significance
threshold. Our rationale is that sequence between sub-regions may not have participated
in the recombination, and we want to identify only those genomic intervals that possess

prima facie evidence of recombination.
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A minimal significant cluster (MSC) is a smallest subset of contiguous SNDs generat-
ing a local score above the threshold. To avoid ambiguity, overlapping MSCs supporting
the same topology are merged into a single representative MSC. Most high scoring seg-
ments consist of a single such cluster, but HSSs with more than 150 SNDs often contain
two or more disjoint MSCs.

HSSs and MSCs are represented graphically by modifying global random walk plots.
By subtracting off the underlying negative trend, only positive local scores are displayed.
Figure 31 shows a local random walk plot for the HSS covering the seven genes of
the tryptophan operon. The trp operon was the first reported example of homologous
recombination in E. coli (Stoltzfus et al., 1988).

Although the entire ¢rp operon may have been exchanged in a single event, only
trpA and trpE contain clusters of KS SNDs that individually give rise to statistically
significant local scores. Moreover, the first MSC clearly includes in excess of 200 bp
downstream of the trp operon - evidence that downstream transcription termination
signals have also been subject to homologous recombination. In this manner, MSCs
facilitate more precise targeting of chromosomal regions implicated in recombination.
This criterion modestly increases the number of recombined segments to 216 (75, 62,
79 for KO, KC, KS, respectively) while reducing the amount of participating sequence
from 251 kb to 129 kb. We outline a procedure for finding non-overlapping minimal

significant clusters inside high scoring segments in Materials and methods.
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HR detected ‘ Genes ‘ Percent Recombined x? score ‘ Multi-Fun Level 2 categories ‘
) 144 3.5 4.52 Ribosome and
peptidoglycan structure
10 237 4.2 0.47 Cell division, cell protection,
and adaptation to stress
14 279 5.0 4.35 Protein-related information
20 329 6.1 2.94 RNA-related information
386 4,035 9.6 Not Reported All other functions,
including unknown
48 357 13.5 9.24 Building block biosynthesis
16 109 13.8 3.21 DNA-related information
7 40 17.5 3.56 Group translocators (PTS)
9 46 19.6 6.24 Motility

Table 6: Categories with few members such as ribosome and peptidoglycan structure
are combined together, as are three types of cell processes. We computed a y? goodness-
of-fit statistic for each category, but do not report p values because dependencies exist
between categories.

7.2.2 Gene content of regions that underwent recent allelic sub-
stitution

Although our method identifies recombination events independently of gene boundaries,
it is interesting to look at the types of genes and gene products involved in these events.
To this end, we extracted a list of genes encoded in regions deemed atypical by our
random walks. Among the 4,353 genes in K-12, 3,107 align across all six genomes. Of
these, 271 genes intersect a minimal cluster segment. When augmented with 40 genes
from the atypical region, 10% of shared genes exhibit evidence of recombination. A table
of the 186 high scoring segments, subdivided into MSCs and identifying affected genes,
is provided as Additional data file 2.

We examined this list of 311 genes in light of gene function assignments made using

a controlled vocabulary called MultiFun (Serres and Riley, 2000) that supports multiple
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functional classifications for a given gene. The 3,107 genes aligned by Mauve in all
six genomes have been classified with 5,550 gene functions. Nearly 2,000 genes have a
single classification (many are 'Unknown function’). By contrast, six genes have seven
"Level 2’ functions. This analysis revealed an over-representation of four categories and
under-representation in seven others (Table 6).

Highly conserved genes that encode components of the ribosome and genes involved
in peptidoglycan biosynthesis show little evidence of detectable recombination. Con-
versely, many genes involved in motility and chemotaxis undergo allelic substitution.
Chemotaxis may also be related to elevated recombination detected among genes encod-
ing components of phosphotransferase transport systems (PTSs) since these genes can
double as sensors for substrates such as glucose and mannose (Zeppenfeld et al., 2000).

Genes involved in basic processing of cellular information, such as replication, tran-
scription and translation, reveal an unexpected dichotomy: genes dedicated to RNA
and protein metabolism are refractory to recombination, but genes involved with DNA
replication, repair and recombination appear prone to allelic substitution. Equally sur-
prising is a bias favoring evident recombination among genes involved in small molecule
biosynthesis. Examples of biosynthetic genes that support the pairings in topology ¥ k¢
include members of the aromatic amino acid pathway (aroP, aroD, and aroG) as well as
the pyrimidine producing carB (also known as pyrA). SND clusters supporting topology
Yo are present in pyrl, pyrB, and several genes in the histidine operon. Finally, purD,
purF, leuDC, modABC, and two genes in the trp operon (Figure 31) contain clusters
compatible with the clonal topology, but at much higher intensity than elsewhere in the

genome.
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Figure 32: Mosaic operons and genes. Three of six rha genes (rhaB, rhaA, and rhaD)
belong to an operon on the reverse strand. This operon is unusual because well- defined
recombination events clearly fall within gene boundaries; rhaD contains two dense KC
clusters, whereas rhaA and rhaB contain predominantly KS and KO SNDs, respectively.
In a nearby operon consisting of fdoG, fdoH, fdol, and fdhFE, there has been a KC
intragenic recombination event with fdoG a mosaic, resulting from two recombination
events, one of which is shared with fdoH.

7.2.3 Mosaic operons and genes

With over 216 recombined segments intersecting 271 genes, this group of E. coli genomes
is truly a patchwork of its constituent members. Although genes within the ¢rp and his
operons contain multiple clusters of the same pattern (KS for ¢rp, KO for his), such
uniformity across operons is atypical (Omelchenko et al., 2003). Figure 32 shows a short
stretch of aligned sequence containing two mosaic operons.

Besides fdoG (shown in Figure 32), six other genes - polB, mutS, speF, recG, actP,
and yfalL - show evidence of mosaicism. Three of these genes—polB, mutS, and recG-are
informational genes involved in DNA replication and repair. Each mosaic gene contains
two minimum significant clusters generated by different partition patterns. A closer
inspection of one of these genes, speF, suggests that all three phylogenetic signals may
be present, as shown in Figure 33.

Other mosaic genes undoubtedly exist within these strains, but their phylogenetic
signal is too short or too weak to register in a genome-wide scan. Full genome scans

come at a cost; one must sacrifice sensitivity to maintain specificity. At present, we are
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Figure 33: Random walk plots for positive local scores in the vicinity of the speF' gene.
speF is a mosaic gene by virtue of its KS and KO clusters. Note the small cluster of
KC SNDs appears to divide a large KS segment near coordinate 718,600. This short KC
spike, though not statistically significant on a whole genome scale, would undoubtedly
pass a single gene substitution distribution type test.
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Figure 34: Percentage of SNDs supporting each of three topologies in a phylogenetic
network for six E. coli genomes (four OTUs). Black lines describe the ’species’ topology.
Green, blue, and orange lines indicate the alternative pairings of sister taxa that result
from KS, KO, and KC recombinations respectively. Also shown is the percentage of
SNDs supporting each bipartition in Table 5.

content to underestimate the true amount of recombination in order to eliminate false

positives.

7.3 Discussion

Natural transformation, transduction, and conjugation are three mechanisms for trans-
porting foreign DNA into the cell. The relative contribution of each mechanism varies
from species to species. For example, transformation is the dominant mode of transfer

in bacteria such as Neisseria meningitidis and Helicobacter pylori that are naturally
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competent, that is, able to absorb small pieces of naked DNA. As E. coli is competent
only under extreme conditions, typically in the laboratory, it is expected that this form
of transformation may play a minor role in nature. Exogenous DNA can also enter
via phage transduction or conjugation, which are expected to be the primary source of
exogenous DNA for E. coli. Transducing phages can deliver large fragments of genomic
DNA from their previous bacterial host into a recipient strain. DNA transferred via
conjugative mechanisms can be even larger.

The lengths of recombined segments reported in the previous section are typically
short. Half the intervals are shorter than 1 kb, and 80% are less than 2 kb. DNA
fragments delivered by transducing phages might be expected to be considerably larger
(30 to 60 kb). The size differential between entrance and incorporation molecules has
been partially reconciled by experiments in which site-specific DNA was packaged into
phages and transduced into K-12 cells (McKane and Milkman, 1995). Screening for
recombinants in the proximity of the ¢rp operon, the authors found average replacement
sizes to be in the 8 to 14 kb range. Moreover, multiple replacements were detected in
some instances. In a follow-up paper (Milkman, 1997), the level of sequence dissimilarity
(from 1% to 3%) between recipient and donor strains was shown to correlate with the
degree of abridgement by restriction endonucleases. The length of a typical recombinant
in our study is still an order of magnitude less than that reported by McKane and
Milkman (McKane and Milkman, 1995), but they based their conclusions on restriction
site analysis, which has a limited ability to detect short fragments. Actual incorporations
in their experiments could conceivably have been more frequent and shorter. Overlapping
recombination events at particular sites are also likely to contribute to the net reductions

in observed incorporation sizes.
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Our approach detects significant clusters of phylogenetically informative SNDs, but
does not tell us which lineages participated in the recombination. When presented with
four OTUs, recombination is possible between six undirected donor-recipient pairs: KO,
CS, KS, OC, KC, and OS. These alternative histories can be jointly represented as a
phylogenetic network (Figure 34).

For example, a high scoring KC segment indicates that the donor and recipient
lineages are either K-12 and CFT, or O157:H7 and S. flexneri. Exactly which pair of
lineages is involved in the transfer can sometimes be determined by examining the joint
distribution of all seven SND patterns. Recombinant activity in ¢glyS and the four genes
to its right is illustrated in Figure 35.

The colored intervals in Figure 34 share a common feature: the presence of topolog-
ically informative SNDs is accompanied by the absence of SNDs from two paired sister
taxa. For example, no ’O157 only’ or 'Shigella only’ SNDs are present in the KC/OS
interval inside glyS, strongly suggesting that the O157:H7 and S. flezneri lineages were
involved in the transfer. The other two intervals coincide with gene boundaries. When
viewed in isolation, the genes yiaA and yiaH appear to be reasonable candidates for
recombination. Yet only the KC recombinant inside the glyS gene is detectable by our
whole genome significance thresholds.

Sequence divergence can reduce the likelihood that homologous recombination occurs
between orthologous genes, but does not address the underlying mechanisms that lead
to divergence in the presence of rampant recombination. The restriction of different
lineages of bacteria to distinct niches could act to prevent gene flow, but in the case
of E. coli and Salmonella, the niches overlap. The barriers to exchange might also

reflect more active exclusion of foreign DNA by mechanisms such as restriction enzyme
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Figure 35: The location of all SNDs in a 5 kb region. In clusters demarcated by col-
ored lines, note the corresponding absence of two more common types of SNDs. Three
diamonds in lighter shades of blue, green, and red are compatible tri-partitions. Col-
ored lines demarcate regions where the absence of lineage-specific SNDs is offset by an
increase in the corresponding recombinant pattern (for example, in yiaA4, no K-12 or S.
flezneri only SNDs).

expression. Perhaps the most appealing explanation for the phenomenon would invoke
the activity of bacteriophages, transposons and conjugation-promoting elements as the
key determinants of recombinational potential between taxa. Given the propensity of
these mobile elements to participate in genetic exchange within species and their often
narrow host ranges, we might expect that they promote recombination within a species
but cannot transfer to more diverse organisms. The lack of extensive recombination of
orthologous sequences between species may result from a competition between bacteria
and phage that can activate rapid evolution of barriers to phage infection. Our estimate
for a higher rate of homologous recombination among E. coli underscores the discrepancy
between rates of intraspecies recombination, which appear to be quite common, and rates

of recombination of orthologous genes between species such as E. coli and Salmonella,

which appear to be much less frequent (Daubin et al., 2003).
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Earlier comparisons of different E. coli strains (Milkman, 1997, Dykhuizen and Green,
1991, Reid et al., 2000, Guttman and Dykhuizen, 1994) found recombination among sev-
eral distinct sets of genes. The affected genes in these studies were not randomly selected
and may not have been representative of the shared gene complement. Although our
method surveys all genes, the genomes we compared are heavily skewed towards human
pathogens. As additional FE. coli strains are sequenced, the role of homologous recom-
bination in bacterial genome evolution will become clearer, and may force reassessment
of traditional methods for describing relationships among bacterial taxa (Ochman et al.,
2005, Feil and Spratt, 2001).

Our analytical methods are straightforward here because the number of unrooted
topologies is the same as the number of topologically informative bipartitions. This
correspondence decays exponentially as more operational taxonomic units are added.
Sometimes going from four OTUs to five requires a new analytic procedure (for example,
see (Zhaxybayeva et al., 2004)). We leave the challenging problem of extension to more

taxa for future work.

7.4 Methods

The Mauve alignment tool produces an output file containing separate alignments for
each locally collinear block. Concatenation of LCBs results in a G x M matrix of
nucleotides and gap symbols, where G is the number of genomes and M is the length
of gapped alignments across all blocks. Each matrix column represents one site in
the consolidated alignment. Restricting attention to columns containing at least one

nucleotide difference but no gaps results in a G x M’ sub-matrix A composed solely of
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single nucleotide differences. Automated screening of the Mauve alignment (Figure 28)
filtered out SNDs in regions of poor alignment quality, resulting in a A with dimension
6 by 130,008.

Numerous scoring schemes have been devised to identify and assess the statistical
significance of molecular sequence features on a genomic scale (Karlin and Brendel,
1992, Karlin et al., 1991). One general approach calculates average scores within a
sliding window (for example, (Lobry, 1996, Scherer et al., 1994)). We use an equally
versatile method that computes cumulative scores based on a score function, evaluated
at each column of 0 (see (Karlin and Altschul, 1990) for other applications).

Let = = KS, KC, KO represent the three discordant SND patterns in Table 5,
and let ¥¢ be the unrooted topology compatible with pattern £ € =Z. We define three

complementary score functions on SNDs to filter conflicting phylogenetic signals:
+D,  ifg(s) =¢
Scoreg(s) = —D, if ¢(s) € 2\ {€}
-1, ifg(s)N=E=10
where s is a SND and ¢(s) is the corresponding partition pattern in Table 5, and

D = 13. For a given £ € Z, the cumulative score at the n'® column in A is the partial

sum:

S¢ = Z Scoreg(s;)
i=1
= S5 |+ Scoree(sy)

S5 =0

These score functions share a key characteristic of alignment scoring schemes; both
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generate high scoring segments that identify regions of interest. In the case of alignments,
a high score segment represents a likely sequence homology. A significant difference
between our analysis and sequence alignment is that substitution matrices are empirically
derived from a test set (for example, PAM or BLOSUM). Here, D is not a parameter
in an underlying stochastic model of evolution, but rather a tuning parameter in a
diagnostic specifically designed to detect recombination. The value D = 13 was inspired
by the observation that the most frequent topologically informative pattern, KS, has
an observed frequency of 7.6%, approximately the reciprocal of 13. Alternative integer
values were tried and rejected.

Score functions generate high scoring segments whenever they encounter a cluster
of SND patterns supporting one topology but are discordant with other choices. For
a given topology ¢, we define Scoreg(n) to take on positive values when pattern 7 is
¢ and negative values otherwise (n # £). As discordant patterns are antithetical to
one another, their weights should be equal to but opposite from the one being scanned.
Neutral SND patterns are not individually disruptive to the underlying signal, but in
aggregate they degrade the signal. These non-informative patterns are down-weighted
and made integer-valued as in substitution matrices.

Hence, a large local score—the equivalent of a high scoring segment—is evidence for
recombination between two of the lineages paired by ¢ (for example, £ = KS associates
K-12 with S. flexneri and O157:H7 with CFT).

Random walk plots connect the dots between partial sums that are computed from
SNDs as they occur in A. By contrast, random walks are translation invariant stochastic

processes governed by the relative frequencies in A, irrespective of order. We augment
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the random walk transition probabilities with an additional 'terminator’ state. Termi-
nators break a global alignment into several smaller sub-alignments, and are used to
represent alignment fragmentation caused by ’large’ gaps (> 15 bp in one lineage), spu-
rious alignments, or LCB boundaries (Figure 28). Accordingly, for each £ € =, random

walk increments are distributed according to the following probabilities:

+D with Pr(¢(s) = ¢) = m¢
-D with Pr(¢(s) #€&) =n_
) (6(s) # ) = 7
-1 with Pr(o(s) = &) = Tother
—100,000 with Pr(s is a break in the alignment) = mp,cqr

\

where D = 13, TKO — 0048, TKS — 0076, ToS = 0045, Tother — 0826, Toreak —
0.005 and 7_¢ defined as:
T—¢ = Z I — Tother — Toreak — e
ne=\{¢}
Since the expected value E(X¢) < 0,V¢, sums of these identically distributed vari-

ables generate transient random walks. Random stopping times, defined recursively

by:

o = 0
7 = min{i: S; < Sp}

k
Ter1 = min{i: S; < S;, } for Sy = ZXf

i=1
form a strictly decreasing set of ladder points. Though S; depends on &, we suppress

it for ease of exposition. The horizontal distances between consecutive ladder points
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Figure 36: Statistical justification of threshold values —100, 100, and 170 for topologies
KO, KC, and K8, respectively-used to identify recombination events. Values on the
x-axis are maximal local scores. EVD probability densities for the maximum maximal
local score attained by random walks of length M’ appear as bell-shaped curves with a
pronounced skew to the right. Threshold values, demarcated by vertical lines, correspond
to conservative significance levels (a = 0.05) for these distributions.

Tes1 — Tk, are called ladder epochs. The local record height (LRH) of the &' epoch is
defined by:

LRH,= max {S;—95,_,}>0

T <t<Tp
Ladder epochs measure the size of a high scoring segment in SND units rather than
base pairs (chain length M’ versus M). The number of ladder epochs in a random walk
of size N is denoted by A(N). The distribution of the maximum value in a sequence of

local record heights is an extreme value distribution (EVD) with parameterization:

. = — —uk
Pr(jg}xa(%)LRH]>a:) exp(—NKe )

Here p is the positive solution of an equation involving the moment generating func-

tion:

§(s)
mgfe(...) = ije“X T =1
J

The value of p is solved for numerically. For ¢ k¢, the equation:
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mg fre(p) = 0.045¢"# + 124e ¥ 4 826e# + .005¢ 100000 = 1

has a positive solution at ;1 = 0.1354 (u = 0 is a trivial solution). The value of K can
be computed as a rapidly converging infinite sum (see Appendix of (Karlin and Altschul,
1990)). We chose instead to simulate 2,000 random walks of size N = 10, 000 using the
statistical package R (http://r-project.org). The largest local record height attained
over the course of each simulation is saved. The functional form of the EVD (equation
1) is then fit to a probability histogram of 2,000 stored maxima. The estimated values
of K and A are combined with an N = M’ to adjust for the actual alignment size
(M’ = 129,000 after excluding the atypical region) in each EVD. The densities of the
three EVDs are plotted in Figure 36.

Ladder points, ladder epochs, and local record heights are easily computed with a
few simple R commands. Finding minimal significant clusters—a smallest possible cluster
of SNDs with a significant score—is more challenging. A naive approach takes each SND
within a high scoring segment as the start of some local score, then iteratively adds
successive terms to local scores in parallel until one of the sums exceeds the threshold.
The SNDs producing that sum constitute the first MSC. The process continues on the
remaining sums to seek out additional, non-overlapping MSCs. The algorithm is O(n?)
in the number of SNDs. Such a brute force approach works here because alignment gaps
split the problem into 186 small pieces, the largest of which contains fewer than 700

SNDs.
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Chapter 8

Analysis of gene flux in enterobacteria

Genome comparisons of enteric bacteria demonstrate that an isolate of any given species
will commonly contain substantial novel genetic content not found in other isolates of
the same species (Tettelin et al., 2005). The mechanism by which bacteria acquire and
maintain such lineage-specific content remains obscure, however the consensus belief is
that such content has been acquired by lateral gene transfer (Ragan and Charlebois,
2002). One hypothesis suggests that novel content, occasionally referred to as ORFans,
is commonly introduced into the chromosome by phage (Daubin and Ochman, 2004,
Fischer and Eisenberg, 1999), and that phage harbor a wealth of biodiversity (Edwards
and Rohwer, 2005, Sullivan et al., 2006). Indeed, the high A+T content of many novel
genes relative to the bacterial chromosome supports such a hypothesis. However not all
novel genes show a distinct A+T content or codon usage bias relative to the average
chromosomal distributions. One possibility is that genes without high A+T content
are also of phage origin and had high A+T content when they originally entered the
chromosome, but have since ameliorated through directional selection to appear similar
to the rest of the chromosome. Thus, such genes are thought to have been resident in
the bacterial chromosome for a substantially longer period of time than novel genes with
high A+ T content. Another likely explanation involving phage transduction is that the

gene had only recently been acquired by the phage population and the sequence had not
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yet gained an A-+T bias prior integration with the recipient bacterial chromosome.

Given that microbes somehow rapidly acquire novel content, we must also consider
the pattern of gene loss that allows microbes to maintain their characteristically compact
genomes. If the acquisition rate and the deletion rate are approximately equal, we
might expect to see arbitrary deletions of core genome content at a frequency equal to
observations of novel content, unless deletions of acquired content were strongly favored.
Frequent deletion of acquired content could arise due to either selective pressure or
mutation bias, or some combination thereof. Specifically, deletions in preexisting genes
could be strongly selected against, or acquired genic content could be inherently unstable,
for example if it were flanked by mobile genetic elements.

When novel genes integrate into the chromosome, we may ask how they go on to
integrate with the host microbe’s regulatory system. Do such novel genes slowly come
to be expressed by chance mutations upstream of the coding region? Given that enteric
bacteria appear to have a mutational bias in favor of small deletions (Mira et al., 2001),
it seems difficult to believe that a gene would be maintained long enough to acquire a
functional promoter through random mutation before it were to be destroyed.

Is it possible that novel genes come preloaded with functional promoters and tran-
scription factor binding sites? If this is the case, then it seems extremely likely that the
regulatory logic upstream of the novel gene evolved in a closely related host, and thus
the gene could be considered to be already “naturalized” to the host microbe, with only
some fine tuning necessary for optimum fitness. In this scenario the gene may appear
novel simply because it is not yet part of our sequence database, but it is hardly novel

to the recipient organism.
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Organism ‘ Genorme size

E. coli K12 MG1655 4654221

E. coli O157:H7 EDL933 5623806

E. coli CFTO73 5231428

Shigella flexneri 2457T 4988914

Salmonella enterica Typhi Ty2 4791961
Yersinia pestis KIM 4781914

Yersinia pseudotuberculosis 1P32953 4840899
Erwinia chrysanthems 3937 4922802
Erwinia caratovora SCRI1043 5064019

Table 7: These nine enteric bacteria compose a phenotypically diverse set of organisms.
The E. coli, Shigella, Salmonella, and Yersinia are human pathogens, while the Erwinia
are plant pathogens. F. coli K12 MG1655 is a non-pathogenic laboratory strain.

A third intriguing possibility is that the operon structure of the microbial chromo-
some and the microbial gene expression system has evolved to explicitly favor acquisition
of novel genetic content and its rapid incorporation into the host regulatory program.
In such a model, novel genes could potentially integrate into an existing operon and
immediately become expressed, without disrupting the expression of neighboring genes.
In fact, previous studies have demonstrated a propensity for novel genes to integrate
into existing operon structure (Price et al., 2006).

To better understand the role of gene acquisition and loss in bacteria we analyze
multiple-genome alignments of enteric bacteria. We first study patterns of gene flux
among a group of nine enteric bacteria from a broad phylogenetic spectrum (listed in
Table 7), then narrow the scope of our analysis to a group of twelve complete E. coli
and Shigella genomes (Table 8). By analyzing a set of distantly related taxa and a
second group of closely-related taxa, we hope to gain insight into the rate at which

recent mutations become fixed in microbial populations.
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Organism ‘ Genome size | Mode of pathogenesis

E. coli K12 MG1655 4654221 Non-pathogenic
E. coli O157:H7 EDL933 5623806 EHEC
E. coli O157:H7 Sakai 5594477 EHEC

E. coli HS 4643538 Non-pathogenic
E. coli E2437T7A 4980187 ETEC

E. coli CFTO73 0231428 Uropathogenic

E. cols UTI8Y 5179971 Uropathogenic
Shigella boydii 227 4646520 Invasive
Shigella flexneri 2457T 4988914 Invasive
Shigella flexneri 301 4828821 Invasive
Shigella dysenteriae 197 4551958 Invasive
Shigella sonnei 046 5039661 Invasive

Table 8: Completely sequenced FE. coli isolates presently analyzed. Many of these F.
coli isolates are human pathogens, possibly skewing the results of our analysis. EHEC
indicates enterohaemorrhagic E. coli, while ETEC indicates enterotoxigenic FE. coli.

8.1 Results

The Progressive Mauve alignment system computes an alignment of the nine enteric
genomes listed in Table 7 using 24 hours of compute time on a 2.8GHz Pentium 4 CPU.
The resulting alignment contains 425 Locally Collinear Blocks with a total average length
of 18.7Mbp of genomic sequence. Figure 37 shows a comparison of the structure of each
genome as drawn by the Mauve visualization system. We then apply the backbone
detection algorithm described in Chapter 5 to detect regions conserved among two or
more genomes. Using a random-walk score threshold of 2727 yields a total of 23498
segments conserved among two or more taxa. Of these, 7658 segments are less than
5nt in length and result from merging pairwise segmental homology predictions with
slightly different endpoints. We discard the short segments, yielding a set of 15840
high-confidence segments conserved among two or more genomes. Inclusion of segments

> 5nt present in only a single genome under study yields a total of 31197 segments.



128

i

\

Il

01110 Mo D IONCADONT Gl ‘

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 450000
0
Z 2
[ —— Z

- LUl
[l 00T ] Jlge

igells fios— @}:';;’/ ‘/’/\ \'/'\§ = ! \\\“‘\\ PN
Hmmwwm TR i i)

i
NI o |

IAL)f)L)
AT L O o
‘ﬂllllﬂlllllﬂl_ QA N NI TR SO NI T

il
l

LSS
A\ NN

AT

j
L

Erwinia carotovora subsp. atrosentica str. SCRI1043

Figure 37: Mauve visualization of an alignment of four E. coli and Shigella genomes, one
Salmonella, two Yersinia, and two Erwinia genomes. The alignment contains 346 locally
collinear blocks and numerous lineage-specific segments. Each lineage has undergone
substantial genomic rearrangement, resulting in the scrambled synteny portrait shown
here.
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Clustering of variable segments

Of the 31197 total segments, only 2810 are conserved among all taxa. If all differences in
gene content arose from a single deletion or insertion event at a unique locus, the 2810
segments conserved among all taxa could accommodate a maximum of 2811 gene flux
events, regardless of the phylogenetic relationship among taxa. Given that number of
segments conserved among subsets of the taxa (31197-2810=28387) is much larger than
2810, it stands to reason that multiple events frequently occur at the same site and that

“hotspots” of gene flux must exist.

A gene content phylogeny

We base our analysis on a genome-content guide tree computed by Progressive Mauve.
The Progressive Mauve algorithm applies Neighbor-Joining to a distance matrix based
on a combination of shared gene content and sequence identity. The resulting tree
minimizes the total deviation between pairwise distances and branch lengths. We use
the genome-content guide tree computed by Mauve as a basis for our analysis of patterns
of gene flux. The inferred genome-content guide tree may conflict with a phylogeny based
on nucleotide substitution data and may also conflict with the true phylogeny. For our
analysis of gene flux, errors in phylogenetic inference will likely cause our subsequent
analysis to underestimate the true number of gene flux events, because the tree is biased
towards a topology that gives maximum conservation of gene content. Thus, we consider

our estimates of gene flux to be conservative.
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Figure 38: The pan-genome and core-genomes of clades within the family Enterobacte-
riacae. A genome-content phylogeny and multiple genome alignment was constructed
for nine enteric bacteria using Progressive Mauve. The tree has been midpoint-rooted
placing Yersinia as an outgroup here. The core genome size given at internal nodes
represents the average amount of genome sequence conserved among all taxa below that
node. The pan genome size represents the total amount of unique sequence present in
all taxa below a given node. Homologous sequence present in two or more genomes gets
counted only once towards the total pan-genome size.

8.1.1 The enteric core genome

Armed with a gene-content phylogeny, we consider the portion of the genome conserved
among all members of a given clade to be the “core-genome” for that clade (Wertz et al.,
2003). We define the complementary notion of a “pan-genome” as genome sequence
present in any one or more members of the clade (Tettelin et al., 2005). The genome-
content phylogeny for the nine enteric bacteria and the corresponding core- and pan-
genome size for each clade is shown in Figure 38.

We analyze the functional distribution of genes present in the enteric core genome.

Of the 4307 annotated CDS in E. coli K12, 29.6% of them have at least some portion



131

conserved among all nine enteric genomes. Genes in E. coli K12 have been annotated
with a gene function ontology called Multi-Fun, which was designed to specifically cap-
ture biological aspects of enteric bacteria (Serres and Riley, 2000). As E. coli K12 is
the only genome with a robust Multi-Fun annotation, we restrict our analysis to clades
containing K12. We label clades as "A", "B", "C", and "D", from most diverse to
most specific as shown in Figure 38. Multi-Fun categories found to be under- and over-
represented among genes in the core genome are shown in Table 9. We report the percent
of conserved genes in each functional category, along with a x? goodness-of-fit statistic
for each category. We do not report p-values because a single gene may be assigned to
several Multi-Fun categories, thus dependencies exist among categories.

As we would expect, several functional categories are heavily overrepresented among
conserved genes. Specifically, genes with products involved in ribosomal structure, pro-
tein information transfer, cell division, and some aspects of metabolism show strong
conservation. Some functional categories show significant underconservation, most no-
tably gene products localized to the outer membrane, carbon utilization gene products,
and electrochemical-driven transporter gene products.

We proceeded to compare the functional distributions of genes conserved at each suc-
cessive subclade that includes E. coli K12, i.e. Clades "B", "C", and "D". Differences in
conserved functional categories are indicated by the two leftmost columns in Tables 9, 10,
and 11. Interestingly, outer membrane proteins are significantly under-conserved only
at clades including the Yersinia genus, and carbon utilization gene products are under-

conserved only when the Erwinia genus is included.
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’ U \ D \ NumGenes \ GenesInCat \ Percent \ x° \

MfunLevel2Name

1 43 2.33 10.8 cell structure; pilus"
17 245 6.94 42.6 extrachromosomal; prophage genes
and phage related functions""
29 200 14.5 15.5 transport; Electrochemical
potential driven transporterss
* 11 75 14.7 | 5.67 location of gene products;
outer membrane"
236 1240 19 47 Unknown; No MultiFun Tag
80 405 19.8 13.3 metabolism; carbon utilization
121 285 42.5 15.8 | metabolism; energy metabolism, carbon
49 103 47.6 11.2 | metabolism; macromolecule degradation
123 255 48.2 29.8 | transport; Primary Active Transporterss
77 155 49.7 21 information transfer; DNA related
437 828 52.8 150 location of gene products; cytoplasm"
33 57 57.9 15.4 | cell structure; peptidoglycan (murein)"
265 442 60 137 | metabolism; building block biosynthesiss
219 359 61 119 information transfer; protein related
45 67 67.2 31.8 cell processes; cell division"
59 68 86.8 74.9 cell structure; ribosome"

Table 9: Annotated functions for products of genes that have some portion conserved
among all nine enteric genomes. 29% of all genes annotated in E. coli K12 show evidence
for conservation. Functional categories with a y? value less than 5 not shown. An
asterisk(*) in columns U and D indicates that the functional category appears differently
at clades above (U) and below (D) this clade in the phylogeny.
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’ U \ D \ NumGenes \ GenesInCat \ Percent \ x° \ MfunLevel2Name
21 245 8.57 99.8 extrachromosomal; prophage genes
and phage related functions""
6 43 14 7.18 cell structure; pilus"
* 54 200 27 8.14 transport; Electrochemical
potential driven transporterss
339 1240 27.3 47.8 Unknown; No MultiFun Tag
* 118 405 29.1 11.4 metabolism; carbon utilization
o 182 367 49.6 9.02 | metabolism; central intermediary metabolismm
* 140 255 04.9 14.8 transport; Primary Active Transporterss
* 141 253 55.7 16.3 metabolism; macromolecules
(cellular constituent)biosynthesiss
160 285 56.1 194 metabolism; energy metabolism, carbon
97 155 62.6 20.4 information transfer; DNA related
931 828 64.1 124 location of gene products; cytoplasm"
67 103 65 16.6 metabolism; macromolecule degradation
246 359 68.5 75 information transfer; protein related
336 442 76 147 metabolism; building block biosynthesiss
* 44 57 77.2 20.2 cell structure; peptidoglycan (murein)"
54 67 80.6 28.2 cell processes; cell division"
62 68 91.2 45.4 cell structure; ribosome"

Table 10: 39.7% of K12 genes are conserved among members of clade "B". Functional
categories with a x? value less than 5 not shown. An asterisk(*) in columns U and D
indicates that the functional category appears differently at clades above (U) and below

(D) this clade in the phylogeny.
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U | D | NumGenes | GenesInCat | Percent | x? MfunLevel2Name
* 1 65 1.54 41.9 | extrachromosomal; transposon related"
31 245 12.7 109 extrachromosomal; prophage genes
and phage related functions""
* 15 43 34.9 6.77 cell structure; pilus"
* 717 1240 97.8 17.2 Unknown; No MultiFun Tag
* 130 155 83.9 6.17 information transfer; DNA related
710 828 85.7 40.9 | location of gene products; cytoplasm"
* 89 103 86.4 5.46 | metabolism; macromolecule degradation
255 285 89.5 20.4 | metabolism; energy metabolism, carbon
322 359 89.7 26.2 information transfer; protein related
227 253 89.7 18.5 metabolism; macromolecules
(cellular constituent)biosynthesiss
* 62 67 92.5 6.23 cell processes; cell division"
413 442 93.4 44.1 | metabolism; building block biosynthesiss
* 66 68 97.1 8.81 cell structure; ribosome"

Table 11: 67.5% of K12 genes show evidence for conservation among members of clade
"C". Functional categories with a x? value less than 5 not shown. An asterisk(*) in
columns U and D indicates that the functional category appears differently at clades
above (U) and below (D) this clade in the phylogeny.
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8.1.2 Variable genes, deletion, and lateral transfer

A number of segments are conserved among subsets of the genomes under study. We
have analyzed these segments with an eye towards genes that have undergone lineage-
specific deletion or apparent lateral transfer. Given an internal tree node at which both
child nodes are also internal nodes, we define the notion of a Hop 2 segment as a region
which is present in some taxa below both child nodes, but not present in all taxa below
either child. For example, a Hop 2 at the root of our tree is a segment present in only
one of the two Yersinia, and also present in at least one member of clade "B", but not all
members of clade "B". A Hop 2 pattern can only be explained by multiple independent
deletions of the same segment or lateral gene transfer. Similarly, we define a Hop 1
segment at an internal node as a region which is present in all of one child’s taxa, and
present in some, but not all, of the other child’s taxa. An example at the root node
would be a segment missing from one of the two Yersinia but universally present in all
of Erwinia, Salmonella, Shigella, and E. coli.

We analyze the presence of Hop 1 and Hop 2 segments among members of Clades "A"
and "B". Clade "A" shows evidence for 1138 Hop 1 segments, totalling 216Kbp, and 64
Hop 2 segments, totalling 9.9Kbp. The Hop 2 segments are candidates for lateral transfer
between the Yersinia genus and members of Clade "B". Narrowing our phylogenetic
scope to Clade "B", we find evidence for 1182 Hop 1 segments totalling 140Kbp. There
are 238 Hop 2 segments at this clade, totalling 30.3Kbp.

Analysis of gene functions requires that the gene be present in K12. With that
in mind, we analyzed the functional distribution of Hop segments in Clades "A" and
"B". At Clade "A", 4.99% of K12 genes have some portion contained in a Hop 1

segment. Two functional categories show significant overrepresentation: "transport;
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NumGenes | GenesInCat | Percent ‘ X2 ‘ MfunLevel2Name
2 245 0.816 16.8 extrachromosomal; prophage genes
and phage related functions""
80 1240 6.45 0.64 Unknown; No MultiFun Tag
82 700 11.7 9.11 cell structure; membrane"
66 555 11.9 8.02 | location of gene products; inner membrane"
42 285 14.7 13.6 metabolism; energy metabolism, carbon
24 155 15.5 9.23 information transfer; DNA related
12 67 17.9 7.2 cell processes; cell division"
12 66 18.2 7.5 cell structure; surface antigens
(ECA, O antigen of LPS)""
16 84 19 11.3 | metabolism; metabolism of other compounds
49 253 19.4 36.2 metabolism; macromolecules
(cellular constituent)biosynthesiss

Table 12: Functional categories of genes in K12 that show evidence for lineage-specific
loss (Hop 1) among members of Clade "B". Several categories appear prone to lineage-
specific loss. Functional categories with a y? value less than 5 not shown.

Primary Active Transporters" and "location of gene products; periplasmic space" with
8.24% and 10.4% containing Hop 1 segments, respectively. Only 0.25% of K12 genes are
part of Hop 2 segments at Clade "A", and no categories are significantly overrepresented.
Among members of Clade "B", 8.41% of K12 genes participate in a Hop 1 segment.
Several functional categories show significant overrepresentation in Hop 1 segments at
Clade "B", and are listed in Table 12. Some overrepresented categories make intuitive
sense for pathogenic bacteria, for example, membrane proteins and surface antigens.
Other functional categories such as DNA related information transfer show an unex-
pected tendency towards lineage-specific deletion. Only 0.88% of K12 genes participate
in Hop 2 segments, and no functional categories show significant overrepresentation.
Choice of taxa is an important consideration for our analysis of Hop segments. Be-
cause Hop 2 segments can only be detected when both subclades below an internal node

have at least two or more member genomes, our method cannot detect such segments
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at Clades "C" and "D". Adding another Salmonella genome and the E. coli UTI89
genome would enable detection of Hop 2 segments at "C" and "D". Moreover, sam-
pling additional taxa at any clade would give more information about patterns of gene

conservation both within and across clades.

Genes unique to E. col:

We continued by asking, “What, if any, genes tend to be specific to the E. coli?” We
identified all genomic segments that showed homology only among members of clade "D",
and analyzed their functional distribution. The results, shown in Table 13, indicate
that very few functional categories are significantly unique to E. coli, while a large
number are significantly non-unique. Interestingly, genes of unknown function are the
only category apart from recombination-prone categories such as pili and transposons
that show significant bias towards uniqueness in E. coli. Thus, we conclude that “We

don’t (yet) know what makes an F. coli an E. coli.”

8.1.3 An analysis of twelve E. coli and Shigella

Having examined the gross changes in genetic content that exist among members of
the Enterobacteriacae, we now turn towards a detailed analysis of F. coli and Shigella
isolates. Although we find few functional gene categories that distinguish FE. coli and
Shigella from the remaining enteric bacteria, these microbes harbor a wealth of genetic
diversity within their population that may be exploited to better understand their evo-
lution.

We again apply the Progressive Mauve alignment system to align the twelve genomes

listed in Table 8. The resulting alignment contains 345 Locally Collinear Blocks. There
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NumGenes | GenesInCat | Percent | x? | MfunLevel2Name
2 68 2.94 17.9 cell structure; ribosome"
3 57 5.26 12.7 cell structure; peptidoglycan (murein)"
40 359 11.1 48.5 information transfer; protein related
8 67 11.9 8.37 cell processes; cell division"
54 442 12.2 53.7 metabolism; building block biosynthesiss
32 253 12.6 29.4 metabolism; macromolecules
(cellular constituent)biosynthesiss
110 828 13.3 90 location of gene products; cytoplasm"
38 285 13.3 30.8 metabolism; energy metabolism, carbon
16 103 15.5 8.66 metabolism; macromolecule degradation
16 97 16.5 7.22 metabolism; energy production/transport
65 367 17.7 23.2 | metabolism; central intermediary metabolism
16 90 17.8 5.63 transport; Transporters of
Unknown Classificationn
22 123 17.9 7.58 cell processes; adaptation to stress
29 155 18.7 8.46 information transfer; DNA related
23 115 20 5.11 cell processes; protection
54 255 21.2 9.21 transport; Primary Active Transporterss
81 336 24.1 6.41 information transfer; RNA related
134 555 24.1 10.5 | location of gene products; inner membrane"
113 459 24.6 7.65 transport; substrate
175 700 25 10.5 cell structure; membrane"
475 1240 38.3 15.9 Unknown; No MultiFun Tag
25 43 58.1 9.27 cell structure; pilus"
197 245 80.4 181 extrachromosomal; prophage genes
and phage related functions""
60 65 92.3 74.3 extrachromosomal; transposon related"

Table 13: The genes that make E. coli an E. coli. Genes that have at least one segment
present only in clade "D" (E. coli and Shigella) are identified and listed by functional
category. Functional categories with a y? value less than 5 not shown. What makes
E. coli an E. coli? We don’t know. K12 genes with unknown function are significantly
more likely to be unique to E. coli.
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are 1166 segments conserved among all E. coli and Shigella along with 12950 other
segments present in some but not all genomes. Once again, strong evidence exists that
these microbes have “hotspots” of gene flux.

Progresive Mauve computes a genome-content guide tree for the twelve genomes
which places the E. coli and Shigella into separate clades (Figure 39). Studies of the
phylogenetic signal in nucleotide substitutions among these microbes has revealed that
they have undergone substantial amounts of homologous recombination (See Chapter 7).
Each genome is a mosaic of many phylogenetic histories and thus a single "true’ whole-

genome phylogeny does not exist for these taxa.

Functional distribution of conserved and lineage-specific content

We analyzed the functional distribution of genes in FE. colt K12 that contain at least
one segment conserved among all E. coli and Shigella. The results, shown in Table 14,
indicate that a small number of functional categories show significant over- and under-
conservation.

At the root of our genome content guide tree there are 727 Hop 1 segments with
total length 340Kbp, and 1451 Hop 2 segments with total length 522Kbp. Given that
E. coli and Shigella are one and the same species and undergo frequent homologous
recombination (see Chapter 7), the relatively large number of Hop 2 segments relative
to Hop 1 is not surprising. These segments likely result from lateral genetic transfer, al-
though multiple independent deletion events may play a role in some cases. The number
of Hop 2 segments can not be used to directly estimate the number of recombination
events that have taken place, as multiple Hop 2 segments that support the same par-

titioning of taxa may be colocated on the chromosome and giving evidence for only a
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E.coliK12 MG1655
=1 4.21/5.05
E.coli HS
4.13/5.63
E.coli E24377A
3.68/8.55 E.coliO157:H7 RIMD
| 5.48/5.74
3.97/7.32 E.coli O157:H7 EDL933
E.coli CFT073
4.66/5.74
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3.76/5.95 S flexneri 2A 301
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Figure 39: The pan-genome and core-genomes of E. coli and Shigella. A genome-
content phylogeny and multiple genome alignment was constructed for twelve genomes
using Progressive Mauve. A midpoint-root has been placed on the branch connecting F.
coli and Shigella. The twelve microbes studied here are commonly considered to be the
same species, yet harbor a tremendous amount of genetic diversity. Each microbe has
an average genome size of 5Mbp, but on average contains only 3Mbp which is conserved
among all taxa shown here. The pan-genome size of 12Mbp reflects all unique genetic
content in these taxa, which averages to 750Kbp per sequenced genome.
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NumGenes | GenesInCat | Percent ‘ X2 ‘ MfunLevel2Name ‘
3 65 4.62 38.8 | extrachromosomal; transposon related"
28 245 11.4 117 extrachromosomal; prophage genes

and phage related functions""
15 43 34.9 7.13 cell structure; pilus"
677 828 81.8 20.8 | location of gene products; cytoplasm"
213 255 83.5 8.25 | transport; Primary Active Transporterss
130 155 83.9 5.25 information transfer; DNA related
248 285 87 14 | metabolism; energy metabolism, carbon
62 67 92.5 9.58 cell processes; cell division"
410 442 92.8 37.5 | metabolism; building block biosynthesiss

Table 14: Functional distribution of genes showing conservation among all E. coli and
Shigella. 68.6% of genes in E. coli K12 show evidence for conservation. Functional
categories with a x? value less than 5 not shown. Interestingly, both DNA Information
Transfer and Building Block Biosynthesis categories show significantly above average
conservation. These two functional categories were previously identified as especially
prone to homologous recombination.

single recombination event.

Although only a small number of functional categories show unusual patterns of con-
servation, several functional categories show evidence for interesting patterns of gene
loss and potential lateral transfer. A total of 10.9% of E. coli K12 genes contain Hop 1
segments, with the functional categories: "Unknown", "transport; Electrochemical po-
tential driven transporters”, and "metabolism; metabolism of other compounds" showing
over-representation. 8.66% of E. coli K12 genes participate in Hop 2 segments at the

root node, and the functional distribution is shown in Table 15.

Substantial intergenic variability

When gene flux occurs inside a pre-existing gene, it very likely breaks the gene. We
evaluated the frequency with which gene flux occurs within annotated genes, versus

entirely intergenic regions. To do so, we define a variable site in E. coli and Shigella as
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NumGenes | GenesInCat | Percent ‘ X2 ‘ MfunLevel2Name
138 1240 11.1 8.71 Unknown; No MultiFun Tag
15 75 20 11.1 | location of gene products; outer membrane"
14 66 21.2 12 cell structure; surface antigens
(ECA, O antigen of LPS)""

Table 15: Functional categories that are overrepresented in Hop 2 segments between FE.
coli and Shigella. 8.66% of genes in E. coli K12 participate in Hop 2 segments at this
node. Functional categories with a x? value less than 5 not shown.

any site between two adjacent segments conserved among all taxa (universally conserved
segments). To avoid trivial variable sites due to small indels and slightly mispredicted
homology boundaries, we consider only variable sites longer than 15nt. Given these
criteria, there are 809 variable sites between universally conserved segments. Of these,
23 lie entirely within the boundaries of a single annotated gene and are likely multi-allelic
genes or misannotated pseudogenes (a detailed inspection reveals both cases). A further
260 of the 809 variable sites have endpoints completely outside annotated CDS in all
twelve genomes. 174 of the 260 variable segments with intergenic endpoints contain CDS,
implying that novel genes have been either gained or lost at these sites. Finally 86 of the
260 intergenic variable segments contain no annotated CDS, implying that substantial
variability exists in wholly-intergenic regions. Given that the vast majority of an enteric
genome codes for protein, our observation that 260 of 809 variable segments (32%) have
endpoints outside annotated gene boundaries supports the notion that a strong selective
bias exists against gene flux that breaks genes.

Using the E. coli K12 annotation as a reference, we examined the characteristics
of variable intergenic segments. Genes in enteric bacteria are frequently transcribed
together in operons. Genes that are co-expressed in operons always occur adjacent to

each other and are transcribed from the same strand. We classify neighboring genes as
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either converging, where the 3’ end of both genes are adjacent, diverging, where the 5’
end of both genes are adjacent, or inline, where the genes are adjacent and on the same
strand.

Of the 260 intergenic variable sites, we find that 96 are flanked by converging CDS,
39 are flanked by diverging CDS, and 125 are flanked by inline CDS. To determine
whether such a pattern would be observed merely by chance, we counted all intergenic
sites with non-overlapping genes and performed a y? test. There are 549 converging,
629 diverging, and 2549 inline CDS pairs in E. coli K12 that do not overlap, for a
total of 3727 non-overlapping CDS pairs. We observe a significant overrepresentation of
variable segments in converging regions (x? = 89.17, p =, 2 d.f.), the number of variable
segments in diverging region does not significantly deviate from expectation, and we see
a significant under-representation of variable segments between inline CDS (x? = 14.72,
p=,2df).

The high number of variable sites at converging CDS relative to diverging CDS is a
pattern that would be expected if mutations at converging regions were less detrimental
to the organism than mutations at diverging regions. In cases where new genes were
not gained or lost, our observations of intergenic variability at inline CDS could be an
artifact of subtle tuning of the microbes regulatory program by forming or destroying
operon structures. In cases where genes have been acquired, they may be incorporating

into existing operon structure.

Variability around tRINA and small regulatory RNAs

We examined the propensity of variable segments to cluster in the neighborhoods of

tRNA and small non-coding RNAs annotated as misc_ RNA in the E. coli K12 genome.
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There are 49 annotated misc_ RNA features in F. coli K12. Of our 260 variable inter-
genic segments, 16 of them either contain (7) or immediately neighbor (9) a misc_. RNA
feature. We find much greater variability in the neighborhood of misc_ RNA than would
be expected by chance alone (x* = 50.44, p < 0.001, 1 d.f.). tRNA are well known to
be associated with so-called Genomic Islands of variability (Hacker and Kaper, 2000).
There are 88 annotated tRNA in E. coli K12. We find 20 variable segments that either
immediately neighbor (3), or contain (17) tRNA features. As expected, tRNA are asso-
ciated with variable segments to a greater degree than chance would dictate (x? = 34.78,

p <0.001, 1 d.f).

Alternalogs

When a variable site has undergone a single insertion or deletion event it partitions the
taxa into two groups: those with a “null” allele and those with either novel content or
the ancestral content. If multiple insertion or deletion events occur at the same site, we
may see a pattern where each genome has an alternate non-null allele at a the variable
site. We refer to such variable sites which have at least two different non-null alleles as
alternalogs.

Of the 809 total variable sites, 285 of these fit our definition of an alternalog. Seven of
these are completely contained within annotated gene boundaries in all twelve genomes
and are likely multi-allelic genes. 97 alternalog sites have intergenic endpoints, of which
21 contain no annotated CDS internally implying they are entirely intergenic alternalogs.
The remaining alternalog sites span gene boundaries, but are not entirely contained
in any gene. A small number of alternalogs neighbor or contain misc_ RNA features

in F. coli K12, however the distribution is not as skewed as when all variable sites
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are considered. There are 14 alternalog sites that either neighbor (1) or contain (13)
tRNA annotated in K12, a significant deviation from what would be expected by chance
(x* = 45.27, p < 0.001, df=1).

Figure 40 illustrates a series of genes related to fimbriae and pilus production where
multiple gene flux events have collocated. The resulting genomic structure is a patchwork

with many genes differentially lost or gained in each genome.

8.2 Discussion

We have demonstrated that populations of enteric bacteria harbor a wealth of genetic
diversity. Any E. coli isolate is likely to have between 10% and 20% sequence content not
observed in other E. coli isolate. As we consider a progressively broader taxonomic scope
in our analysis, the total amount of core genome content decreases, eventually reaching
approximately 1Mbp. Given the extreme amount of diversity within the E. coli and
Shigella, it is clear that portions of the core-genome are resistant to gene flux, otherwise
no conserved sequence would remain over the long period of divergence between the
enteric species we study here. Thus, it appears that novel content is usually transient,
but occasionally becomes fixed in the population through positive selection.

In some cases, newly acquired content may appear to replace content that previously
existed at a given locus. The novel content may initially “infect” the first member of the
population through simple insertion, and subsequent deletion of adjacent content would
yield an apparent replacement, or alternalog. If the novel content is advantageous,
population members with the replacement may experience positive selection. Previous

studies suggest that the population size of E. coli may be very large (Berg, 1996). If
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Figure 40: Mauve visualization of the mosaic structure of the yfcOPQRSTUV gene
cluster and neighboring regions. The yfc gene products have fimbrial and pilus-related
functions. Regions conserved among all nine taxa are shown in pink, and the height of
the pink similarity plot indicates the degree of conservation for such regions. Segments
conserved among only the Yersiniae are shown in yellow, while other colors represent
regions conserved among different subsets of the taxa. The white rectangular blocks
indicate the locations of annotated genes. The yfc gene cluster is present only in the F.
coli and Shigella. The yfcO gene appears to have three different alleles, one shown as
green in the third and fifth genomes (O157 and Shigella) , the other two alleles shown
as white in the first and second genomes (K12 and CFTO073).
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microbial population sizes are indeed large, we would expect genetic drift to fix neutral
acquisitions or deletions at a very low rate. In such a scenario we expect the same
neutral acquisition or deletion to be observed in more than one independently sampled
member of the population very rarely unless the mutation occurred a “long” time ago.
If microbes have very high recombination rates, however, the process of genetic drift
could be substantially accelerated (Novozhilov et al., 2005), and recent acquisitions
could rapidly “invade” the population even if they are neutral or mildly deleterious.
Unlike sexual organisms, intraspecific recombination in microbes is not tied to generation
time, but rather appears to be episodic (REEVES, 1960). Without an upper bound on
recombination rate, it may prove difficult to distinguish alleles whose frequency in the
population has recently increased due to genetic drift from those under strong positive
selection.

It may be possible to estimate the overall recombination rate in microbes by in-
vestigating patterns of shared novel content and deletion mutations in conjunction with
nucleotide substitution data. Given baseline estimates of recombination rates along with
(unrealistic) assumptions that the recombination rate is constant over time and that all
portions of the chromosome are uniformly subject to recombination, it becomes possible
to identify novel acquisitions and deletions that have been subject to positive selection.
Detailed knowledge of the selective forces at play during the process of gene flux would
be a great boon to the field of microbial population genetics and our understanding of
nature as a whole.

Finally, we have identified significant amounts of gene flux in entirely intergenic
segments, and discovered an unexpected correlation between gene flux and annotated

misc_ RNA features. misc_ RNA features are typically small non-coding RNAs that play
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a role in gene regulation. Although it has been previously known that small RNAs are
rarely conserved across species, the extent of their diversity within species was heretofore
unappreciated. Further study will undoubtedly shed light on the role gene flux plays in

the evolution of gene regulation in enteric bacteria.
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Chapter 9

Bayesian models of genome evolution

9.1 Background

Current genome alignment systems make several simplifying assumptions that limit their
value for characterizing rates and patterns of large-scale evolution. Genome aligners typi-
cally report the single highest scoring genome alignment according to their scoring metric
without considering uncertainty in the best-scoring alignment. Uncertainty in the align-
ment affects every aspect of downstream analysis of the alignment, from phylogenetic
shadowing for functional inference, to investigation of the breakpoints of recombination.
Clearly, uncertainty should be considered if at all possible.

Assessing uncertainty in genome alignments requires a more statistically rigorous
treatment of genome alignment than that used by state-of-the-art genome alignment
methods. Previous studies of uncertainty in gapped alignments indicate that analytical
calculation of alignment probability is far too expensive even for short alignments of few
taxa with simple evolutionary models (Miklos et al., 2004). For this reason, Bayesian
MCMC methods must be employed. Their slow adoption has been in part due to the
complexity of implementation and in part due to the the computational cost of sampling
many alignments versus calculating a single highest-scoring alignment. However, recent

advances in Bayesian alignment sampling have demonstrated its feasibility for short
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sequences (Lunter et al., 2005, Redelings and Suchard, 2005, Suchard and Redelings,
2006, Fleissner et al., 2005).

We presently describe a Bayesian model of genome evolution that can be applied
for analysis of microbial genomes. The model has not been implemented, however, we

discuss practical considerations for its implementation.

9.2 A model of genome evolution

The first step towards development of a statistical method for genome alignment is the
elucidation of a stochastic model of evolution which captures the most important aspects
of genome evolution. A tradeoff exists in model complexity, as increasingly complex
models promise to provide more accurate descriptions of the evolutionary process, but
come at the cost of requiring increasingly large amounts of data for accurate model
parameterization and greater computational effort for inference. Keeping that tradeoff
in mind, I propose a simplistic model of genome evolution that incorporates several of
the major evolutionary forces we have observed to affect enteric bacteria.

At a bare minimum, a probabilistic model of genome evolution must incorporate the
following mutation operators: nucleotide substitution, insertion and deletion of arbitrar-
ily sized segments, and rearrangement by inversion. To maintain model simplicity, we
do not incorporate rearrangement by transposition or duplication/loss processes, as a
series of overlapping inversion events could produce similar genome arrangements, albeit
with additional rearrangement events. Acquisition and loss of entire genes and operons
can be modeled by the indel process with arbitrarily long segments. The model assumes

a phylogenetic tree relating the genome sequences, with branch lengths that represent
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divergence times. Our previous observation of significant heterotachy in mutation rates
for genome rearrangement and gene flux suggests that each mutation type should have
per-branch rates. A full list of model parameters is given in Table 16.

The proposed model can be viewed as a merge and extension of two previously de-
scribed stochastic models of evolution. We incorporate the long-indel model of sequence
evolution used by Bali-Phy (Redelings and Suchard, 2005), extending the model slightly
to separate branch-lengths from mutation rates and allowing indel rates to be indepen-
dent of substitution rates. We then incorporate the model of genome rearrangement
by inversion described by Larget et al. (2004), also allowing inversion events to have

branch-specific rates.

9.2.1 Notation

Multiple sequence alignments are typically displayed in row-column format with gap
characters spacing the sequences such that homologous regions align in columns. The
row-column format mutliple alignment is imprecise, however, because more than one
row-column alignment can encode identical homology information, differing only in the
placement of gap characters. We adopt a homology structure based on a partial order
graph, which yields an unambiguous means to record homology infomation (Lee et al.,
2002). A genome alignment consists of several homology structures—one for each Locally
Collinear Block (LCB)-the set of which are denoted H. In the proposed model the set
of LCBs is denoted by Y. To simplify calculation each LCB is defined as an interval
of at least one nucleotide present in all of the k genomes under study. Thus, a given
LCB Y, can be parameterized by its left and right-end coordinates in each genome:

Y; = {(Yi.lefty,Yi.righty), ..., (Yilefty, Yiright,)}. All or part of the region covered
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| param | Parameter Description | prior
G Observed set of genome sequences fixed
v Tree topology with k leaves uniform
T A vector of branch lengths for ¥ T~ (T, TA)
To Branch length gamma distribution hyperparameter fixed
(5 Branch length gamma distribution hyperparameter fixed
Ny Per-branch rates of nucleotide substitution Ny ~ T'(Ny, Ny)
N, Substitution rate gamma distribution hyperparameter fixed
Ny Substitution rate gamma distribution hyperparameter fixed
Q Substitution rate matrix fixed
@ Gamma-distributed substitution rate heterogeneity shape parameter | uniform
D Mean indel length uniform(0. .. 100)
Dy Per-branch indel rates Dy ~T'(D,, Dy)

Per-branch indel counts

Dx|DbTb ~ POiSSOH(DbTb)

Per-branch set of indel sites

length(D,) ~ Geom(D;)

Per-branch set of indel event times

uniform(0, 73,)

Indel rate gamma distribution hyperparameter

fixed

Indel rate gamma distribution hyperparameter

fixed

The set of all indel variables, excluding D, and D)

Per-branch inversion rates

I, ~T(1,,1y)

Per-branch inversion counts

I.|Iymy ~ Poisson(I,7p)

Per-branch set of inversion event breakpoints uniform(Q)
Per-branch set of inversion event times uniform(0, 7,)
Inversion rate gamma distribution hyperparameter fixed
Inversion rate gamma distribution hyperparameter fixed

The set of all inversion variables, excluding I, and Iy

The set of locally collinear blocks (nuisance parameter) uniform

Set of per-LCB homology structures uniform

Table 16: Parameters for a Bayesian model of genome evolution.




153

by the LCB can be homologous among the two sequences, as dictated by a homology
structure H;. In this model, every nucleotide in every genome is part of some LCB.
In addition to providing a framework for the homology structures, the LCBs allow
the genome sequences to be reduced to signed permutations for rearrangement history
inference.

Given a set of genome sequences G = {g1,..., gz}, we denote the length of the '

genome sequence as |g;|.

9.3 The posterior distribution

We write the complete set of model parameters as @ = {V, 7, N}, «, D, 1, Y, H}, and
the set of fixed data as Q = {G, N,, N\,Q, D, D), I,,I,}. The unnormalized joint

posterior distribution of model parameters can be expressed as:

P(©|Q2) o< P(W)P(Y)P(7|re, 7a) P(Ny| No; N») -
P(Db‘DaaD/\)P(Dl)p(Da:’DbT)P<Dr|D:L‘7DZ)P(DS‘T>D96) ’
P([buav]/\)P([a:|IbT)P([r|[x)P(Is|Ta Ix) ’
PH|G,7,Q, N, P(Y|I)P(HD)P(G/HY)

where

1

P(Y) = (2k — 51!

when k& > 2 (more than two genomes). The number of possible LCB configurations,

denoted Y# can be expressed as

v =3 (i) ] <|gij’__11> (9.1)
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where n is the length of the shortest genome. Thus, we can write P(Y) = ﬁ Intu-
itively, we can think of Y'# as counting all possible LCB structures among the genomes.
The sum term accounts for the fact that there are anywhere between 1 and n collinear
segments in each genome, and the second (product) term considers all possible ways the
collinear segments could be combined across genomes into LCBs.

The conditional probabilities for I follow from (Larget et al., 2004). Briefly, we
define a set of per-branch inversion rates I, coming from a gamma distribution with
shape parameter I, and scale parameter I. I, is a vector with 2k — 3 elements, the
number of edges in the tree. We then define a total per-branch count of inversions I,
which is Poisson distributed with per-branch intensities equal to I,7, i.e. the product of
inversion rate and branch time. We go on to define [, as the actual inversion events that
took place along each branch, and we define a set of per-branch inversion event times
I, which are uniformly distributed along the branch (which has I, events and 7 units
of time).

The conditional probabilities for D are similar to those for I, but include some bias
towards particular indel sizes, whereas our prior on inversion events treats all events as
equally likely. Again we define D, as a per-branch mutation rate for indels, gamma-
distributed with shape and scale D, and D), respectively. We sample a per-branch
count of indel events, which is Poisson distributed with per-branch intensities equal to
Dyt. D, represents the actual indel events taking place along each branch, and Dy
are the corresponding event times uniformly distributed along the branch. The term
P(D,|D,, D;) reflects the probability of observing a series of D, indel events given that

indel lengths are distributed according to a geometric distribution with mean D,. P(D;)

is the prior probability of a given mean indel length, which we take to be uniformly
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distributed between 0 and 100.

The term P(H|G, 7, Q, N}) calculates the probability of the homology structure given
the genome sequences. The probability of the homology structure depends on the prob-
ability of the nucleotide substitution events among members of G implied by the homol-
ogy structure. Substitution probabilities can be calculated using Felsenstein’s peeling
algorithm (Felsenstein, 2004).

The final three terms in the unnormalized posterior are indicator terms whose prob-
ability is 1 if the proposed structures are consistent with the data. Specifically, we write

these as:

P(Y[) = Lwr.1)-Y)
H|

i=1
P(GIHY) = Lvm-q)
Where P(Y|I) indicates whether the proposed rearrangement events are consistent
with the proposed LCB structure Y. The term P(H|D) indicates whether the proposed
indel events are consistent with the proposed homology structure. Finally, the term

P(G|H,Y) has value 1 when the genome sequence data is consistent with the proposed

homology structure and LCB structure.

Inference under the model

The marginal probability distribution of model variables provides a basis for biological
insight. For example, a probability distribution over the breakpoints of rearrangement

encoded by I, can identify likely positions on the chromosome where a rearrangement
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event was initiated. By studying the sequence motif at that site, it may be possible to
infer whether the rearrangement event was mediated by homologous recombination, an
IS or transposable element, or illegitimate recombination. The probability distribution
over homology structures can inform us which regions are likely to have been conserved
throughout evolution, and also places a distribution over endpoints of gene acquisition
and differential gene loss. We can then investigate the surrounding sequence for evidence

of phage involvement or other recombination mechanisms.

9.3.1 Sampling from the model

Due to the complexity of the model, direct analytical calculation of marginal probabilities
for each variable is not possible. Instead, it will be necessary to sample likely values for
each of the above listed variables using Markov-chain Monte-Carlo. Towards this end,
the sampling methodology and model for rearrangement events follows the lead of Larget
et al. (2002) whereby inversions were specified by an event count per branch (/) with
event times given by a Poisson process (Is). At proposal steps requiring modification of
the rearrangement scenario, a method similar to Larget et al. (2004) would be used to
propose a plausible rearrangement scenario. Their method proposes an inversion that
reduces the overall inversion distance with high probability, and with low probability,
proposes inversions that either maintain the same inversion distance or increase the
distance. It is likely that use of a parallel Metropolis-coupled sampling strategy would
be necessary to improve mixing speed.

Given an alignment and a phylogenetic tree, it is possible to quickly calculate the
minimum number of indel events that could give rise to the observed alignment. Thus

the indel events can be parameterized in a manner similar to rearrangements, namely by
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having per-branch parameters for the actual series of events, their times, and an event
count whose prior is biased by the minimum possible number of events. We can then
sample indel events as rearrangements are sampled; specifically, indels that reduce the
total number of remaining events required to explain the homology structure are sampled
with high probability. Indels that leave the number of remaining events constant are
sampled with small probability while other indel events are sampled with an even smaller
probability.

Because genome sequences can be several megabases in length, the alignment sam-
pling method must use anchored alignment techniques. With some high probability,
the sampler proposes a set of anchors and LCBs (Y) consistent with the high scoring
local alignments. LCBs inconsistent with the set of high scoring local alignments should
be proposed with lower probability. Among the high probability anchor proposals, it
may be possible to bias the proposal distribution toward LCB configurations with fewer
rearrangement breakpoints.

Given a set of LCBs (Y) and alignment anchors, an alignment can be proposed by
combining the traditional dynamic programming approach for anchored alignment with
a stochastic traceback step. In stochastic traceback, rather than selecting the highest
scoring path at each step of the traceback procedure, a path is chosen randomly with
probability proportional to its score. Lunter et al. (2005) describes how to calculate pro-
posal probabilities for standard alignment, and we anticipate extending the methodology
to anchored alignment. Bali-Phy uses a slightly different mechanism to propose new
alignments among taxa which appears to offer better mixing (Redelings and Suchard,
2005). Thus, if their approach can be combined with an anchoring strategy it may be

preferable.
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The MCMC sampler moves through a series of states X = xg,xy,...,X,, each of
which is represented by a particular set of parameter values. Transitions between states
are achieved by a set of proposal update mechansisms. The quality of proposal updates
is critical to achieving high acceptance ratios and good mixing behavior for the Markov

chain. The sampler uses the following proposal update mechanisms:
1. Update tree topology (using mechanisms such as NNI and TBR)

2. Update a pair of breakpoint positions for a sequence subject to existing anchor

constraints (recalculate alignment in new regions)
3. Sample a new anchor for a position in a sequence (update rearrangement scenario)
4. Disable an anchor (possibly update rearrangement scenario)
5. Disable an entire LCB
6. Sample a new rearrangement scenario
7. Sample a new indel scenario
8. Resample part of the alignment

The first proposal mechanism, an update to the tree topology, requires a correspond-
ing update of rearrangement scenarios and indel events, although the homology structure
is invariant. The second proposal mechanism would require changes to the homology
structure and possibly indel events, although the LCB structure and rearrangement
events could remain invariant. Finally, resampling the alignment would also require cor-

responding updates to the indel scenarios. Future work to derive Metropolis-Hastings
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acceptance ratios for each proposal type will be required before any of these proposal

mechanisms can be implemented in software.

9.4 Discussion

The proposed model takes an intentionally simplified view of the forces at play during
genome evolution. The model ignores rearrangement mediated by transposition, block
interchange, and duplication-loss processes. The model does not include segmental du-
plication, which we feel is an acceptable simplification when modeling bacterial genomes
that appear to have strong selective pressure to maintain small genome size.

Perhaps more importantly, the model does not include any notion of lateral transfer
among population members. Isolates of enteric bacteria have provided strong evidence
for homologous recombination’s role in exchanging genetic material among members of
a population. When such recombination takes place, a single tree topology no longer
represents the true history of the genomes under study. Thus, the proposed model may
have serious shortcomings in its representation of population-level evolution. However,
cross-species recombination has been demonstrated to be much rarer than intraspecific
recombination (Beiko et al., 2005, Mau et al., 2006). Therefore it seems plausible that
the model could be applied to a set of genomes so long as no two genomes are members
of the same species (i.e. little homologous recombination has taken place).

Although other work has used a single likelihood calculation for the probability of
a tree given both indels and nucleotide substitutions in a TKF91 model, the method
can only accomodate single nucleotide indels. Because larger indels obviously occur we

consider our model more realistic. Our more realistic model comes at the expense of
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sampling full indel histories for the genomes under study. It remains to be seen whether

the approach is computationally tractable.
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Appendix A

Palindromic seed patterns

Weight Pattern | Seed Rank by Sequence Identity

65% | 70% | 75% | 80% | 85% | 90%
5 1xx111%%1 2 2 2 2 2 7
6 INEENENEE NN 2 2 2 2 3
7 IEIREEESEELSNES] 2 2 2 2 2 2
8 111x*x1x1x*x111 2 2 2 2 2 2
9 T1dxkIxk1kk14,x111 3 2 2 2 2 2
10 111xIkxdkk1x*x1%111 5 3 2 2 2 2
11 111x1xIkxIkx1x1x111 3 2 2 2 2 2
12 1111k 1+x114x1x1111 1 1 3 3 2 3
13 111x1x11x*k1xx11x1%111 2 1 2 2 2 2
14 1111k 1*11*x%11%1%x1111 1 1 2 2 2 2
15 111111 kxR k1k11%x1111 3 2 2 2 3 4
16 111x111kxIk1dx1kx111%x111 5 4 2 2 2 2
18 1111 %1+ 1k 1+x11%1x11111 2 2 2 2 2 2
19 RRRRESESRETSRREEIRESE SRR EE] 6 4 2 3 4 6
20 1111 1¢11x111+x111x11%11111 1 1 8| >10|>101| > 10
21 | 11111111k 111x 111111111 | > 10 3 2 1 1 1

Table 17: Second-most sensitive palindromic spaced seeds used by procrastAligner.
The sensitivity ranking of a seed at various levels of sequence identity is given in the
columns at right. A seed with rank 1 is the most sensitive seed pattern for a given weight
and percent sequence identity. The default seeds used by procrastAligner are listed
in Chapter 3, while these seeds are the second-most sensitive set of optional seeds.
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Weight Pattern | Seed Rank by Sequence Identity

65% | 70% | 75% | 80% | 85% | 90%
5 11%x1x%11 3 3 3 3 3 2
6 11%1x1%11 3 3 3 3 3 1
7 INESEEESEEESE SN 3 3 3 3 3 3
8 INEEIESESESEL NI 4 4 3 4 4 4
9 111kl 1k14%111 2 3 3 3 3 3
10 111k1xx11x%1%x111 2 2 3 3 3 3
11 IR IETSESESELSEL SR 9 6 3 3 3 3
12 INRESRESEEESENNE SN 3 2 2 2 3 6
13 111k1xx11x1x11+x1%111 5 3 4 3 4 6
14 1111x1+1kx11xx1x1%1111 4 4 3 3 4 )
15 11116k 11k k1 %1x11%x1111 5 3 3 3 2 2
16 11111 k*x11*x1*x1x11*x*%11111 4 3 4 3 3 4
18 1111k dkk1Ik1x1k11%x11%1111 | > 10 6 3 3 3 3
19 1111x11%111%1x111+11x1111 1 1 4 10| >10 | > 10
20 | 11113 x 1111 kk 11k 111x1%11111 | > 10 | > 10 1 2 3 3
21 11111 1%1*11%111%x11*x1%111111 3 2 4 10 | > 10 7

Table 18: Third-most sensitive palindromic spaced seeds used by procrastAligner.
The sensitivity ranking of a seed at various levels of sequence identity is given in the
columns at right. A seed with rank 1 is the most sensitive seed pattern for a given weight
and percent sequence identity. The default seeds used by procrastAligner are listed
in Chapter 3, while these seeds are the third-most sensitive set of optional seeds.
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Appendix B

Description of the Mauve Multi-M UM

search algorithm

The multi-MUM search algorithm described herein is a seed-and-extend method based
on the method that can identify both multi-MUMSs occurring in all genomes under study
in addition to those occurring only in subsets of the genomes being searched. The multi-
MUM search algorithm has time complexity O(G?n + Gnlog Gn) where G is again the
number of genomes and n the length of the longest genome. Further, the random-
access memory requirements are proportional to the number of multi-MUMs found, not
n, allowing it to efficiently tackle large data sets. O(Gn) disk space is used to store
sequentially accessed data structures.

The algorithm proceeds by constructing a sorted list of k-mers for each genome g € G.
The sorted k-mer lists are then scanned to identify kmers that occur in two or more
sequences but that occur at most once in any sequence. If a multi-MUM that subsumes
the k-mer match has not yet been discovered, then the match seeds an extension in each
genome until a mismatch occurs. When a mismatch occurs an extension is seeded in the
subset of sequences that are still identical, but only if a subsuming multi-MUM has not
yet been discovered.

Given a match seed, a key feature of our algorithm is its ability to efficiently determine
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whether an existing multi-MUM subsumes the seed. Mauve uses a hash table to track
known matches. The hash function h(M) for a match M yields a quantity we refer to
as the generalized offset of a match M. Using the notation of multi-MUMs introduced
in the primary manuscript, h(M) can be written as h(M) = Z].Gzl |M.S;...M.S|. In
order to mitigate the effects of potential hash collisions, each bucket of the hash table
uses a binary search tree to store matches.

For the purposes of time complexity analysis, the matching algorithm can be de-
constructed into four primary components: Sorted Mer List (SML) construction, seed
match identification, seed lookup in the known match hash table, and seed extension.
SML construction can be accomplished in O(Gn) (linear) time using radix sort meth-
ods. Identifying seed matches from the Sorted Mer Lists requires a single sequential
scan through each SML and is thus also O(Gn). The seed lookup phase can be exe-

cuted at most once for every multi-MUM seed. Because there are Gn mers, the largest

Gn
2

possible number of unique mer-matches is . If all of these mer-matches were to hash
to the same bucket then a tree search and insertion would be required for every seed
match. Using a splay tree (Sleator and Tarjan, 1985), the amortized time complexity
for Gn tree lookups and insertions is O(GnlogGn). The amount of match extension
depends on the number and size of multi-MUMSs identified. Because we are identifying
MUMs, each nucleotide can be a part of at most 2 MUMs on the forward strand and 2
MUDMs on the reverse strand, for a total of 4 MUMs. Furthermore, it holds that any 2
nucleotide can be a part of at most 4 multi-MUMs with a given multiplicity. Thus each
nucleotide can be a part of 4G multi-MUMs, or just O(G) multi-MUMs. For a given

multiplicity m, the largest possible amount of extension work depends on the maximum

possible number of matching mers at that multiplicity: % Further, each extension at a
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particular multiplicity m requires m character comparisons. Thus the maximum number

Gn

of character comparisons for a given multiplicity is m=" or just Gn, and since there are

G multiplicity levels, the maximum number of comparisons to find all multi-MUMs is
G?n.

By adding the contributions each of the algorithmés four components make toward
the total running time, we arrive at Gn+Gn+Gnlog Gn+G?*n. In asymptotic notation,
the Gn terms are subsumed by G?n, leaving O(G*n+Gnlog Gn). It is important to note
that although suffix tree algorithms provide better asymptotic time complexity than our
seed-and-extend method, in practice our implementation is very fast and space efficient.
Furthermore, the seed matching technique can be easily modified to use weighted /spaced
seeds, allowing inexact string matching not possible with suffix tree-like data structures

in the same low asymptotic time complexity.



166

Appendix C

Partitioning matches into collinear

subsets

As part of the anchor selection process, Mauve must partition the initial set of multi-
MUMs M into collinear subsets. To do so, Mauve implements a breakpoint analysis
algorithm based on the description of breakpoints given by Blanchette et al. (1997). We
refer to the resulting collinear sets of multi-MUMSs as LCBs. An LCB can be defined
formally as a maximal collinear subset of the matches in M, or Icb C M where M; is
the i'" multi-MUM in the LCB. The MUMs that constitute an LCB must satisfy a total
ordering property such that M;.S; < M;;.5; holds for all 7, 1 < i < |icb| and all j,
1<j<G.

Mauve uses a standard breakpoint determination algorithm to partition the set of
multi-MUMs into a set of LCBs. First, Mauve orders the multi-MUMs in M on |M;.Sy|.
Next, a monotonically increasing label between 1 and |M| is assigned to each MUM
corresponding to the index of the MUM in the ordering on |M;.Sy|. We will refer to the
label of the i*» multi-MUM as M;.label. Note that M;.label € IN. Next, the set of multi-
MUMs is repeatedly reordered based on |M;.S;| for j = 2...G. After each reordering,
the set of multi-MUMs are examined for breakpoints. A breakpoint exists between

M; and M, if M;.label + 1 # M, .label and both M; and M;,, are in the forward
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orientation, or if M;.label — 1 # M;;.label and both M; and M;,, are in the reverse
complement orientation. A breakpoint also exists if M; is in a different orientation than
M; 1 in sequence j, e.g. the sign of M,;.S; is different than the sign of M;;,.5; . Finally,
the multi-MUMs are re-ordered on M.label and the LCBs are then any maximal length
subsequence of multi-MUMs M, ... M, ; that does not contain any recorded breakpoints

between multi-MUMs.
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