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iAbstra
t
The explosive growth of genome sequen
ing has yielded 
omplete genome sequen
es ofseveral 
losely related ba
terial spe
ies, and e�orts to sequen
e entire populations areunderway. Through genome 
omparison we expe
t to gain insight into the sele
tive
onstraints shaping the evolution of these organisms. Genome 
omparison also pro-vides a framework for 
hara
terizing the rates and patterns of large-s
ale evolutionaryevents su
h as genomi
 rearrangement and lateral gene transfer whi
h to date are poorlyunderstood.This do
ument des
ribes the development of 
omputational methods for the iden-ti�
ation and 
lassi�
ation of homologous genomi
 sequen
e among a set of sequen
edgenomes. The homology analysis 
onsists of four basi
 pro
edures : (1) rapid identi�
a-tion of segmental homology from raw genomi
 sequen
e, (2) distinguishing orthologousand xenologous segments from paralogous segments, (3) global multiple alignment oforthologous and xenologous segments, and (4) dis
rimination between orthology andxenology.The su

ess of the analysis pro
edure rests on previously established models of se-quen
e and genome evolution. Genome sequen
es typi
ally 
omprise several million orbillion nu
leotides, thus the s
ale of the data analysis poses a 
hallenge. Several heuris-ti
 approa
hes for 
oping with large datasets have been investigated and are reportedherein.Appli
ation of the analyti
 te
hniques to the sequen
ed genomes of Enteri
 ba
teriareveals striking patterns of genome evolution. Rates of genomi
 rearrangement appear



iito be highly variable in the enteri
 ba
teria and may be linked to adaptive evolution.The analysis reveals substantial eviden
e for widespread homologous re
ombination inpopulations of enteri
 ba
teria, indi
ating that these mi
robes 
annot be 
onsidered as
lonal populations.
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1Chapter 1
Introdu
tion
Sin
e Zu
kerkandl and Pauling �rst des
ribed mole
ules as do
uments of evolutionaryhistory (Zu
kerkandl and Pauling, 1965), our ability to trans
ode DNA sequen
e into
omputer-readable information has undergone several dramati
 revolutions. Currentgenome sequen
ing te
hnology (Margulies et al., 2005, Shendure et al., 2005) provideslow-
ost sequen
ing for mi
robial genomes and populations. The vast quantity of ge-nomi
 information available presents us with the tantalizing possibility of using mole
ularinformation to re
onstru
t the evolutionary history that has led to the 
urrent state ofour biosphere.Along the path to re
onstru
ting evolutionary history we inevitably dis
over newfa
ets of the biology of modern organisms. The indelible mark of evolution lies onevery organism within and around us, and that mark 
an be exploited to draw inferen
eon everything from population dynami
s, to mating behavior, disease, the organism'sbio
hemistry, and the organism's environment. Grounded in an understanding of modernbiology and evolutionary history, we may begin to make similar inferen
es on the biologyof organisms that lived many thousands or millions of years ago.Given our newfound ability to read the do
uments of evolutionary history, we nowfa
e the 
hallenge of 
omprehending the story unfolding before us. We must ask ourselvesat what s
ale should we attempt to understand the pro
ess of evolution. Many previous



2studies have elu
idated the evolutionary history of one or a few individual genes, whi
hare taken as representative of the organism. When taken out of the 
ontext of thegenomes in whi
h they reside, the inferred evolutionary history of individual genes mayshow mysterious patterns that are di�
ult to interpret. For example, when intera
tingproteins 
o-evolve, distin
t genes will have intertwined evolution but su
h an e�e
t maynot be observed by 
onsidering only one of the two genes. Thus to study organismalevolution it seems natural to study the evolution of genomes as a whole. Of 
ourse,organisms live in the 
ontext of an environment whose 
onditions often have a profoundimpa
t on the biology of the organism. Thus, one might also ask whether it makes senseto study genome evolution in isolation of a 
orresponding study on the evolution of theenvironment.Re
ent 
omparative studies of ba
terial genomes have demonstrated that members ofthe same mi
robial spe
ies may harbor as mu
h as 10-20% unique genomi
 
ontent notpresent in other isolates of the same spe
ies (Perna et al., 2001, Tettelin et al., 2005). Insome 
ases the novel genomi
 
ontent appears to be re
ently a
quired and spe
i�
 to theenvironment in whi
h the parti
ular ba
terium lives (Sullivan et al., 2006). Furthermore,ba
teriophage appear to play a fundamental role in introdu
ing and maintaining geneti
diversity within ba
teria (Edwards and Rohwer, 2005). If geneti
 
ontent is in fa
tfrequently environment- and ni
he-spe
i�
, a study of individual mi
robial genomes inisolation would fail to reveal the fundamental role that environment-spe
i�
 phage haveplayed in evolution.Inferen
e of evolutionary history through DNA sequen
e is a startlingly 
omplextask. Given two or more DNA sequen
es that presumably des
ended from a 
ommonan
estor, we would like to identify the most likely an
estral sequen
e, and a series



3of events that transformed the an
estor into the presently observed sequen
es. Ourinferen
es are predi
ated on some model of mole
ular 
hange, i.e. a set of allowablemutation operations that 
an be used to transform one sequen
e into another. Givena set of mutation operations, our model then must 
hara
terize the frequen
y withwhi
h ea
h type of mutation might o

ur. Typi
ally, we are un
ertain what model bestdes
ribes the mole
ular evolution of any given DNA sequen
e, thus we must furtherassume that our model is wrong. Even if the 
hosen model fails to 
apture the truenature of the evolutionary pro
ess, it may nevertheless prove to be a useful model if it
an make reasonably a

urate predi
tions when fa
ed with data whose evolution violatesmodel assumptions.A model of genome evolutionAs genomes evolve, they undergo large s
ale evolutionary pro
esses not readily observedamong short gene sequen
es. Re
ombination 
auses frequent genome rearrangements,horizontal transfer introdu
es new sequen
es into ba
terial 
hromosomes, and deletionsremove segments of the genome. Given a set of genomes to 
ompare, 
onserved regionsmay exist among some or all taxa, and their ordering may be shu�ed among taxa.Traditional models of sequen
e evolution in
orporate nu
leotide substitution, andinsertion and deletion of small subsequen
es (indels). To a

ount for genome-s
ale evo-lution, we must extend the model to in
lude rearrangement events su
h as inversion,translo
ation, and 
hromosomal fusion and �ssion. When 
ombined with di�erentialgene loss, segmental dupli
ation 
an also 
reate the e�e
t of apparent genome rear-rangement. Finally the model must in
orporate some notion of gene a
quisition.Given our model of genome evolution and a data set of genome sequen
es, we would



4ideally be able to derive the most likely history of mutation events under that model.Unfortunately, the 
omplex model stru
ture and the s
ale of genomi
 datasets pre
ludedire
t analysis. In order to draw 
omputationally tra
table inferen
e on genome evolu-tion, we subdivide the analyti
 pro
edure into the separate steps of genome alignmentand evolutionary analysis. Subsequent 
hapters of this do
ument des
ribe methods forgenome alignment and evolutionary analysis that have been developed.The genome alignment pro
ess identi�es regions of sequen
e that are likely to beorthologous. That is, an alignment identi�es nu
leotides whi
h are derived from the samenu
leotide in the 
ommon an
estor of one or more extant genomes. When homologousgenomi
 segments have been a
quired via lateral gene transfer, su
h segments are saidto be xenologous be
ause the 
ommon an
estor of those segments is di�erent than the
ommon an
estor for the 
lonally reprodu
ed portion of the genome.The genome alignment te
hniques des
ribed herein do not distinguish between xenol-ogous and orthologous segments. In order to distinguish su
h segments, we analyze thegenome alignment to identify regions whose mole
ular evolution is best explained by ahistory that in
ludes 
ross-spe
ies lateral gene transfer or intraspe
i�
 re
ombination.We apply our genome alignment methods to a large group of enteri
 ba
teria. Theresulting genome alignments provide a foundation for investigations into the evolutionof these ba
teria. Spe
i�
ally, we investigate rates of intraspe
i�
 re
ombination andgene a
quisition both within spe
ies and a
ross spe
ies.



51.1 An overview of the following 
haptersThe following 
hapters des
ribe new methods we have developed to address the prob-lem of genome alignment, and also do
ument 
omparative analyses of enteri
 ba
teriaenabled by the 
omputed genome alignments. Spe
i�
ally, Chapter 2 dis
usses previ-ous work related to genome alignment, statisti
al analysis of mole
ular evolution, andanalysis of genome evolution. Chapter 3 des
ribes an e�
ient te
hnique for identifyinglo
al-multiple alignments whi
h 
an subsequently be used as genome alignment an
hors.The subsequent 
hapter des
ribes an e�
ient approa
h to alignment of genomi
 DNA
onserved among a group of 
losely-related organisms. Chapter 5 des
ribes an extensionof the genome alignment te
hnique presented in Chapter 4 to handle organisms whi
hhave variable genomi
 mutation rates and have gained or lost substantial amounts ofgeneti
 material. We then s
rutinize the a

ura
y of the des
ribed genome alignmentmethods in Chapter 6, drawing 
omparison to other state-of-the-art methods. Chapter 7do
uments a te
hnique for partitioning genome alignments into segments with 
onsistentphylogeneti
 signal, i.e. distinguishing orthologous segments from xenologous segments.Chapter 8 des
ribes an analysis of gene gain and loss patterns among a large groupof enteri
 ba
teria, based on genome alignments 
omputed using our newly developedmethods. Finally, Chapter 9 dis
usses problems with 
urrent approa
hes to genomealignment and proposes a Bayesian model of genome evolution for whi
h alignments andevolutionary histories 
ould be jointly estimated.



61.1.1 Spe
i�
 
ontributions of this thesis
• A 
omputational method for e�
ient mat
h �ltration and identi�
ation of lo
al-multiple alignments, supporting rapid homology dete
tion in large genome se-quen
es
• A 
omputational method for multiple genome alignment and 
omparison that iden-tify orthologous and xenologous sequen
e more a

urately than previous methods
• Simulation-based methods to 
hara
terize the a

ura
y of genome alignment algo-rithms
• An analysis of Enteroba
teria to identify fun
tional 
ategories of genes that tendto be ex
eptionally well-
onserved throughout evolution
• An analysis of E. 
oli populations to identify highly variable regions and dis
overyof an asso
iation among genomi
 variability and annotated fun
tional non-
odingRNA.
• A des
ription of a Bayesian model of genome evolution that 
aptures the majorpatterns of mutation in the Enteroba
teria
ae.



7Chapter 2
Related work
Evolutionary models of nu
leotide substitution des
ribe rates and patterns of substitu-tion between a pair of sequen
es. The simplest model, referred to as the Jukes-Cantormodel, asserts that ea
h nu
leotide in the sequen
e has an equal probability of mutationper unit time, and that when it mutates, it be
omes one of the other three nu
leotideswith equal probability (Jukes and Cantor, 1969). Similar models in
rease in �exibilityand parameterization up to the general reversible model, whi
h uses six parameters tospe
ify the probability of mutation between any pair of nu
leotides per unit time (Felsen-stein, 2004). Su
h models are time-reversible, in the sense that if we have nu
leotide iat one end of a bran
h and nu
leotide j at the other, the probability of 
hanging fromi to j, P (i→ j), is equal to that for 
hanging from j to i, P (j → i), assuming uniformba
kground nu
leotide frequen
ies. When P (i → j) and P (j → i) are unequal, themodel is not reversible and it be
omes easier to 
al
ulate the position of the root on thetree. The most general non-reversible model spe
i�es probabilities for all 12 possiblenu
leotide substitutions (Felsenstein, 2004).



82.0.2 Sequen
e alignmentThe basi
 evolutionary models give rise to s
oring s
hemes for the vast majority ofsequen
e alignment methods. These sequen
e alignment methods 
ombine a substitu-tion matrix 
omposed of log-likelihood estimates of nu
leotide substitution probabili-ties with an empiri
ally derived penalty for introdu
ing gaps to ultimately arrive at as
oring s
heme for alignments with gaps. Early sequen
e alignment algorithms su
has Needleman-Wuns
h 
al
ulate the highest s
oring alignment between a pair of glob-ally homologous sequen
es under the given s
oring s
heme (Needleman and Wuns
h,1970). Smith-Waterman lo
al alignment extends the basi
 Needleman-Wuns
h approa
hto the 
ase where input sequen
es may not be globally homologous by identifying lo
allyhigh-s
oring subsequen
es (Smith and Waterman, 1981). Both methods utilize dynami
programming to �nd the highest s
oring alignments. Although su
h methods 
ouldtheoreti
ally be applied to align several sequen
es of arbitrary length, their dynami
programming algorithms require O(nG) 
al
ulation where n is sequen
e length and Gis the number of genomes. As either n or G grow the amount of 
omputation requiredqui
kly be
omes intra
table.The low-
ost and ready availability of genome sequen
ing has driven developmentof s
alable methods to align multiple sequen
es of arbitrary length. Many multiple se-quen
e aligners extend Needleman-Wuns
h to progressive alignment (Thompson et al.,1994, Lee et al., 2002, Notredame et al., 2000), whi
h s
ales O(Gn2). In the progressivealignment model, a phylogeneti
 tree guides an alignment pro
edure where the most
losely related sequen
es are aligned �rst and ea
h additional sequen
e is aligned tothe growing multiple alignment in an order spe
i�ed by its distan
e in the phylogeneti




9guide tree. A further improvement to the progressive alignment strategy is the addi-tion of an iterative re�nement step performed after the initial progressive alignment (Doet al., 2005, Edgar, 2004). Iterative re�nement repeatedly sele
ts arbitrary sequen
e(s)to remove from the alignment and re-align. Empiri
al studies demonstrate that iter-ative re�nement signi�
antly improves alignments generated by progressive alignmentapproa
hes (Walla
e et al., 2005). Surprisingly, iterative re�nement produ
es betteralignments when it 
onsiders guide trees other than the topology presumed to be the'
orre
t' phylogeny for the input sequen
es (Edgar, 2004).Progressive multiple sequen
e alignment methods su�er the limitation that appli
a-tion to long (typi
ally n > 100Kbp) sequen
es be
omes prohibitively time-
onsuming.Several heuristi
 approa
hes to align long sequen
es have been developed under the as-sumption that highly similar subsequen
es 
an be found qui
kly and are likely to bepart of the 
orre
t global alignment. These lo
al alignments are used to an
hor a globalalignment, redu
ing the number of possible global alignments 
onsidered during a sub-sequent O(n2) dynami
 programming step. Some spurious lo
al alignments are typi
allyfound due to random sequen
e similarity, parti
ularly when using a sensitive lo
al align-ment method. A method for sele
ting alignment an
hors must be employed to �lter outspurious mat
hing regions. Alignment tools su
h as MUMmer (Del
her et al., 1999),GLASS (Batzoglou et al., 2000), and AVID (Bray et al., 2003) align pairs of long se-quen
es, implementing various methods to dis
over lo
al alignments. Similar multiplesequen
e alignment methods for long sequen
es have been developed and implementedin software pa
kages su
h as MAVID (Bray and Pa
hter, 2003), Multi-LAGAN (Brudno



10et al., 2003a), TBA (Blan
hette et al., 2004), MGA (Hohl et al., 2002), and Auber-Gene (Szklar
zyk and Heringa, 2006). All of these pairwise and multiple sequen
e align-ers assume the input sequen
es are free from signi�
ant rearrangements of sequen
eelements, sele
ting a single 
ollinear set of alignment an
hors.Long genomi
 sequen
es typi
ally 
ontain signi�
ant rearrangements of orthologoussequen
e and methods have re
ently been developed to align genomi
 sequen
e in thepresen
e of rearrangements (Brudno et al., 2003b, Darling et al., 2004a, Ov
harenkoet al., 2005, Blan
hette et al., 2004, Treangen and Messeguer, 2006, Raphael et al., 2004).Su
h methods relax the assumption that alignment an
hors must o

ur in the same orderand orientation, allowing inversions and other rearrangements of an
hors. On
e a set ofan
hors has been sele
ted, these methods typi
ally use progressive alignment to 
ompletea multiple alignment.Alignment an
hor sele
tion in the presen
e of rearrangements is 
losely related tothe problem of segmental homology dete
tion. The segmental homology dete
tion taskis simply to identify all homologous regions of sequen
e among a pair of genomes. Onegeneral approa
h identi�es regions of sequen
e where lo
al alignments tend to 
lustertogether (Pevzner and Tesler, 2003a, Hampson et al., 2005, Calabrese et al., 2003, Kurtzet al., 2004b). Su
h methods 
onsider the distan
e between lo
al alignments on the
hromosome as an indi
ator of segmental homology but do not usually 
onsider quality(s
ore) of su
h lo
al alignments or their 
ollinearity. A se
ond set of approa
hes 
onsid-ers alignment s
ores and distan
es between alignments in a pairwise (Haas et al., 2004)or multiple sequen
e setting (Abouelhoda and Ohlebus
h, 2004, Bourque et al., 2004).A third approa
h 
onsiders lo
al alignment quality and 
ollinearity, but not distan
e



11between lo
al alignments in order to a

ommodate di�erential gene 
ontent due to dele-tion and horizontal transfer (Darling et al., 2004a, Mau et al., 2004). Other approa
hes
ombine 
hromosomal distan
e, lo
al alignment s
ore, and 
ollinearity metri
s (Dar-ling et al., 2004b, Hampson et al., 2003). None of these methods 
onsider the series ofrearrangement events that would give rise to a given segmental homology stru
ture.All of the alignment methods des
ribed thus far use an ad-ho
 s
oring penalty to de-termine the pla
ement of gaps in the alignment. A se
ond body of work assumes a morerigorous evolutionary model that in
ludes nu
leotide birth and death rates in additionto substitution rates. Methods based on su
h a model are referred to as �statisti
al�alignment methods. When 
onsidering the probability of an alignment, these methodssum over the probability of all possible evolutionary histories that 
ould give rise to thatparti
ular alignment given a �xed phylogeneti
 tree. The simplest evolutionary modelthat 
onsiders indels is the TKF91 model, whi
h models single nu
leotide insertions anddeletions with equal birth and death rates for all sites in a sequen
e (Thorne et al., 1991).The TKF91 model has been studied extensively and extended from pairwise alignmentto alignment on arbitrary phylogeneti
 trees (Nielsen, 2005). Be
ause TKF91 only mod-els single nu
leotide indels, likelihood 
al
ulations for larger indels remain skewed. Aslightly more realisti
 model was reported in TKF92, whi
h models indels of arbitrarylength, but whi
h may not overlap ea
h other in the evolutionary history (Thorne et al.,1992), i.e. an inserted sequen
e may not subsequently have a deletion. A further modelimprovement, referred to as the long-indel model, allows overlapping indels and wasre
ently presented in 
onjun
tion with an algorithm to 
al
ulate alignment likelihoodsunder the model (Miklòs et al., 2004). The primary hindran
e to widespread adoption ofstatisti
al alignment methods has been their prohibitive 
omputational 
ost. The most



12e�
ient implementations of TKF91 require O(2GnG) time to deterministi
ally 
omputethe most likely alignment, while the long indel model requires O(n4) time for an ap-proximate pairwise alignment whi
h allows up to two overlapping indels per site (Lunteret al., 2003, Nielsen, 2005, Metzler et al., 2001, Fleissner et al., 2005, Lunter et al., 2005,Holmes and Bruno, 2001). Re
ent progress in this area has yielded an implementationof long-indel model alignment 
alled Bali-Phy (Redelings and Su
hard, 2005, Su
hardand Redelings, 2006). Bali-Phy simultaneously estimates the alignment and phyloge-neti
 tree, using Markov-
hain Monte-Carlo to sample the joint posterior distributionof alignments and phylogenies. The model of evolution assumes that indel rates arealways proportional to substitution rates, thus variability in indel or substitution ratesover time would 
onstitute model violation.A simple and obvious extension to the basi
 evolutionary models 
onsiders that nu-
leotide substitutions and indels do not o

ur with equal probability at all sites in asequen
e. One example are 
oding regions where silent third base pair substitutions ap-pear more frequently than substitutions at other sites and frameshift-indu
ing indels areusually sele
ted against. Some s
ore-based alignment methods 
an a

ount for position-spe
i�
 mutation rates (Kent and Zahler, 2000, Thompson et al., 1994, Edgar, 2004), buta more general approa
h has been implemented using Pro�le Hidden Markov Models,whi
h model site-spe
i�
 substitution, insertion, and deletion rates at all sites (Durbinet al., 1998). Pro�le-HMMs require O(n2) time and spa
e to align a sequen
e to a pro-�le. Constru
tion of the initial pro�le 
an pro
eed from a manually-
urated multiplealignment or de novo using Baum-Wel
h training. In order to a

urately estimate site-spe
i�
 mutation rates and produ
e reasonable alignments, su
h methods require mu
hmore sequen
e data than the previously des
ribed s
ore based methods. Be
ause large



13amounts of genome sequen
e data have not yet be
ome available Pro�le-HMM methodshave not yet been extended to large genomi
 sequen
es.One 
riti
ism of Pro�le-HMM methods is their ignoran
e of the phylogeneti
 rela-tionship among sequen
es 
ontributing to the pro�le. To address this 
riti
ism severalTree-HMM models have been proposed (Qian and Goldstein, 2003, Mit
hison, 1999,Mit
hison and Durbin, 1995). Given a phylogeny, su
h models typi
ally pla
e a Pro�le-HMM at ea
h node of the phylogeny, assigning probabilities for transitions between ea
hpair of Mat
h, Insert, and Delete states along ea
h bran
h. Although Tree-HMMs 
anmodel site-spe
i�
 variation along a phylogeny they remain di�
ult to 
onstru
t in astatisti
ally sound manner, usually requiring a pre-existing multiple sequen
e alignmentand phylogeny. Furthermore, 
ontroversy exists over the issue of 'memory' whereby anan
estral state biased toward a parti
ular type of insertion or deletion in
orre
tly biasesdes
endant states toward the same insertion or deletion (Felsenstein, 2004).2.0.3 Phylogeneti
 inferen
eAssuming that the sequen
es under study are related, phylogeneti
 inferen
e attemptsto re
onstru
t a likely history of their divergen
e and possibly the history of mutationevents that gave rise to the observed sequen
es. Early methods used parsimony or somedistan
e metri
 over nu
leotide substitutions to inform tree inferen
e. Although thesemethods 
an be e�
iently applied to a large number of sequen
es, parsimony tends tounderestimate true phylogeneti
 distan
e, while distan
e-based methods don't providea history of mutation events (Holder and Lewis, 2003).More re
ently, methods based on the previously des
ribed nu
leotide substitutionmodels have gained a

eptan
e in the form of Maximum Likelihood (ML) or Bayesian



14estimates of phylogeny (Holder and Lewis, 2003). Bayesian methods provide a parti
u-larly appealing route for phylogeneti
 inferen
e be
ause not only 
an they provide themost likely 
onsensus tree, but 
an also assess the un
ertainty in various tree topologiesand evolutionary s
enarios. Bayesian phylogeneti
 inferen
e over nu
leotide substitutiondata was pioneered by Mau et al. (1999), and has sin
e blossomed with several furtherre�nements and widely used implementations (Larget and Simon, 1999, Huelsenbe
kand Ronquist, 2001, Drummond et al., 2006).With advan
es in genome sequen
ing, analyses of horizontal transfer and genomerearrangement have be
ome feasible. Early methods to analyze genome rearrangementsfo
used on determining parsimonious inversion and translo
ation s
enarios among pairsof sequen
es (Hannenhalli and Pevzner, 1995). Parsimony models of inversion werelater extended to phylogeneti
 inferen
e among several rearranged genomes (Tang andMoret, 2003, Bourque and Pevzner, 2002). Larget et al. (2002) pioneered a Bayesianmethod to infer a series of inversion events and an asso
iated phylogeny, and re
entlydes
ribed extensions to their method that enable e�
ient and reliable analysis of largedata sets (Larget et al., 2004). Re
ently Miklos (2003) des
ribed a Bayesian inferen
emodel for inversions and transpositions between a pair of genomes, however it has yet tobe extended to phylogeneti
 inferen
e among multiple genomes. Re
ent work has yieldednew models for rearrangement that in
lude the blo
k inter
hange operation, whereby asegment of DNA may ex
ise from the 
hromosome, form a 
ir
ular-intermediate, andre-insert elsewhere in the 
hromosome, possibly linearizing with di�erent endpoints thanthe original ex
ised segment (Yan
opoulos et al., 2005, Lu et al., 2005).



152.0.4 Integrated inferen
e methodsAs previously mentioned, the steps of model sele
tion, alignment (inferen
e of orthology),and phylogeneti
 inferen
e are interrelated in that inferen
es made in one step 
an a�e
tinferen
es made in another. Numerous attempts have been made to integrate these stepsinto a uni�ed methodology. Many of these methods follow the Expe
tation-Maximizationparadigm whereby they estimate the alignment given the tree, then re-estimate the treegiven the alignment. One example is MAVID, whi
h iteratively re�nes tree topology (butnot bran
h lengths) and a genome alignment (Bray and Pa
hter, 2003). BADGER usesBayesian MCMC to 
osample inversion phylogeny and inversion history (Larget et al.,2004). Lunter et al. (2005) des
ribe an e�
ient method for 
osampling protein sequen
ealignments and phylogeneti
 trees using the TKF91 model, and the aforementionedBali-Phy method extends the 
osampling to a model that in
ludes multi-residue indels.Sampling methods have the additional advantage of assessing 
on�den
e in a parti
ularalignment or tree topology in the form of a posterior probability for the inferen
e.



16Chapter 3
Mat
h �ltration for lo
al-multiplealignment
3.1 Introdu
tionPairwise lo
al sequen
e alignment has a long and fruitful history in 
omputational biol-ogy and new approa
hes 
ontinue to be proposed (Ma et al., 2002a, Brudno and Mor-genstern, 2002, Noé and Ku
herov, 2004, Kent, 2002, S
hwartz et al., 2003, Kahve
iet al., 2004). Advan
ed �ltration methods based on spa
ed-seeds have greatly improvedthe sensitivity, spe
i�
ity, and e�
ien
y of many lo
al alignment methods (Choi et al.,2004, Li et al., 2006, Sun and Buhler, 2005, Xu et al., 2004, Flanni
k and Batzoglou,2005). Common appli
ations of lo
al alignment 
an range from orthology mapping (Liet al., 2003) to genome assembly (Ja�e et al., 2003) to information engineering taskssu
h as data 
ompression (Ane and Sanderson, 2005). Re
ent advan
es in sequen
e dataa
quisition te
hnology (Margulies et al., 2005, Shendure et al., 2005) provide low-
ostsequen
ing and will 
ontinue to fuel the growth of mole
ular sequen
e databases. To
ope with advan
es in data volume, 
orresponding advan
es in 
omputational methodsare ne
essary; thus we present an e�
ient method for lo
al multiple alignment of DNAsequen
e.



17Unlike pairwise alignment, lo
al multiple alignment 
onstru
ts a single multiple align-ment for all o

urren
es of a motif in one or more sequen
es. The motif o

urren
es maybe identi
al or have degenera
y in the form of mismat
hes and indels. As su
h, lo
almultiple alignments identify the basi
 repeating units in one or more sequen
es and 
anserve as a basis for downstream analysis tasks su
h as multiple genome alignment (Dar-ling et al., 2004a, Hohl et al., 2002, Treangen and Messeguer, 2006, Dewey and Pa
hter,2006), global alignment with repeats (Sammeth et al., 2005, Sammeth and Heringa,2006, Raphael et al., 2004), or repeat 
lassi�
ation and analysis (Edgar and Myers,2005). Be
ause it identi�es multiple alignments, lo
al multiple alignment di�ers fromtraditional pairwise methods for repeat analysis whi
h either identify repeat families denovo (Kurtz et al., 2000) or using a database of known repeat motifs (Jurka et al., 2005).Previous work on lo
al multiple alignment in
ludes an Eulerian path approa
h pro-posed by Zhang and Waterman (2005). Their method uses a de Bruijn graph based onexa
tly mat
hing k-mers as a �ltration heuristi
. Our method 
an be seen as a general-ization of the de Bruijn �ltration to arbitrary spa
ed seeds or seed families. However, ourmethod employs a di�erent approa
h to seed extension that 
an identify long, low-
opynumber repeats.The lo
al multiple alignment �ltration method we present has been designed toe�
iently pro
ess large amounts of sequen
e data. It may be used to qui
kly �nd
onserved repetitive motifs in a single sequen
e, or, may be used to identify putativehomology in a group of 
on
atenated sequen
es. The remainder of the 
hapter dis
ussesour method in the 
ontext of �nding repeats in a single sequen
e, although the methodtrivially generalizes to �nding repeats and putative homology in a group of 
on
atenatedsequen
es. Our method is not designed to dete
t subtle motifs su
h as trans
ription
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ACAGCTAGCATGGCAA...GTTACCTAG

1*1*1

1 AAC
 2 ACG
  3 ACA
   4 CAC
    5 CAC
     6 TCA
      7 ACT

Step 1. Apply seed pattern at each position
to extract either the forward or reverse seed

8 CTC
 9 CAG
 10 AGC
  11 TCA
   12 GCA
     ...
      

  ...
  N-9 GAC
   N-8 GTA
    N-7 AGA
     N-6 ACA
      N-5 CAG

      

  1 AAC
  3 ACA
N-6 ACA
  2 ACG
  7 ACT
N-7 AGA
 10 AGC
  4 CAC
  5 CAC

Step 2. Hash seeds to identify
matches of two or more seeds

  9 CAG
N-5 CAG
  8 CTC
 12 GCA
N-9 GAC
N-8 GTA
  6 TCA
 11 TCA

}

} }

}

Figure 1: Appli
ation of the palindromi
 seed pattern 1*1*1 to identify degeneratemat
hing subsequen
es in a nu
leotide sequen
e of length N . The pattern 1*1*1 indi-
ates a requirement for mat
hing nu
leotides at positions 1, 3, and 5 of a subsequen
e,while positions 2 and 4 may mismat
h. The lexi
ographi
ally-lesser of the forward andreverse 
omplement subsequen
e indu
ed by the seed pattern is used at ea
h sequen
eposition.fa
tor binding sites in small, targeted sequen
e regions�sto
hasti
 methods are bettersuited for su
h tasks (Bailey and Elkan, 1995, Siddharthan et al., 2005, Lawren
e et al.,1993).3.2 Overview of the methodOur lo
al multiple alignment �ltration method begins by generating a set of 
andidatemulti-mat
hes using palindromi
 spa
ed seed patterns (listed in Table 1). The seedpattern is evaluated at every position of the input sequen
e, and the lexi
ographi
ally-lesser of the forward and reverse 
omplement subsequen
e indu
ed by the seed pattern ishashed to identify seed mat
hes (Figure 1). The use of palindromi
 seed patterns o�ers
omputational savings by allowing both strands of DNA to be pro
essed simultaneously.Given an initial set of mat
hing sequen
e regions, our algorithm then maximallyextends ea
h mat
h to 
over the entire surrounding region of sequen
e identity. A visual



19Weight Pattern Seed Rank by Sequen
e Identity65% 70% 75% 80% 85% 90%5 11*1*11 1 1 1 1 1 16 1*11***11*1 1 1 1 1 1 17 11**1*1*1**11 1 1 1 1 1 18 111**1**1**111 1 1 1 1 1 19 111*1**1**1*111 1 1 1 1 1 110 111*1**1*1**1*111 1 1 1 1 1 111 1111**1*1*1**1111 1 1 1 1 1 212 1111**1*1*1*1**1111 5 3 1 1 1 113 1111**1**1*1*1**1**1111 > 10 5 1 1 1 114 1111**11*1*1*11**1111 2 2 1 1 1 115 1111*1*11**1**11*1*1111 1 1 1 1 1 116 1111*1*11**11**11*1*1111 2 1 1 1 1 118 11111**11*1*11*1*11**11111 1 1 1 1 1 119 1111*111**1*111*1**111*1111 5 2 1 1 1 120 11111*1*11**11*11**11*1*11111 > 10 > 10 3 1 1 121 11111*111*11*1*11*111*11111 1 1 1 3 3 2Table 1: Palindromi
 spa
ed seeds used by pro
rastAligner. The sensitivity ranking ofa seed at various levels of sequen
e identity is given in the 
olumns at right. A seed withrank 1 is the most sensitive seed pattern for a given weight and per
ent sequen
e identity.The default seeds used by pro
rastAligner are listed here, while the additional optionalseeds appear in Tables 17 and 18 of Appendix A.example of maximal extension is given by the bla
k mat
h in Figure 2. In order toextend over ea
h region of sequen
e O(1) times, our method extends mat
hes in order ofde
reasing multipli
ity�we extend the highest multipli
ity mat
hes �rst. When a mat
h
an no longer be extended without in
luding a gap larger than w 
hara
ters, our methodidenti�es the neighboring subset mat
hes within w 
hara
ters, i.e. the light gray seedin Figure 2. We then link ea
h neighboring subset mat
h to the extended mat
h. Werefer to the extended mat
h as a superset mat
h. Rather than immediately extend thesubset mat
h(es), we pro
rastinate and extend the subset mat
h later when it has thehighest multipli
ity of any mat
h waiting to be extended. When extending a mat
h
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ACGGATTAGATSequence:

Seed Matches:

Maximal extension

of black seed:

Subset link to 

light gray seed:Figure 2: Seed mat
h extension. Three seed mat
hes are depi
ted as bla
k, gray, andlight gray regions of the sequen
e. Bla
k and gray have multipli
ity 3, while light grayhas multipli
ity 2. We maximally extend the bla
k seed to the left and right and in doingso, the bla
k seed 
hains with the gray seed to the left. The light gray seed is adja
entto only two out of three 
omponents in the extended bla
k seed, thus we refer to thelight gray seed as a subset relative to the extended bla
k seed. We pro
rastinate andextend the light gray seed later. We 
reate a link between light gray and the extendedbla
k seed mat
h.with a linked superset (light gray in Figure 2), we immediately in
lude the entire region
overed by the linked superset mat
h�obviating the need to re-examine sequen
e already
overed by a previous mat
h extension.We s
ore alignments generated by our method using the entropy equation and exa
t
p-value method in Nagarajan et al. (2005). Our method may produ
e many hundreds orthousands of lo
al multiple alignments for a given genome sequen
e, thus it is importantto rank them by signi�
an
e. When 
omputing 
olumn entropy, we treat gap 
hara
tersas missing data.



213.3 Algorithm3.3.1 Notation and assumptionsGiven a sequen
e S = s1, s2, . . . , sN of length N de�ned over an alphabet {A,C,G, T},our goal is to identify lo
al multiple alignments on subsequen
es of S. Our �ltrationmethod �rst generates 
andidate 
hains of ungapped alignments, whi
h are later s
oredand possibly re-aligned. Denote an ungapped alignment, or mat
h, among subsequen
esin S as an obje
t M . We assume as input a set of ungapped alignments M. We referthe number of regions in S mat
hed by a given mat
hMi ∈M as the multipli
ity ofMi,denoted as |Mi|. We refer to ea
h mat
hing region of Mi as a 
omponent of Mi. Notethat |Mi| ≥ 2 ∀ M ∈ M. We denote the left-end 
oordinates in S of ea
h 
omponentof Mi as Mi.L1,Mi.L2, . . . ,Mi.L|Mi|, and similarly we denote the right-end 
oordinatesas Mi.Rx. When aligning DNA sequen
es, mat
hes may o

ur on the forward or reverse
omplement strands. To a

ount for this phenomenon we add an orientation value toea
h mat
hing region: Mi.Ox ∈ {1,−1}, where 1 indi
ates a forward strand mat
h and-1 for reverse.Our algorithm has an important limitation on the mat
hes in M: no two mat
hesMiand Mj may have the same left-end 
oordinate, e.g. Mi.Lx 6= Mj.Ly ∀ i, j, x, y ex
eptfor the identity 
ase when i = j and x = y. This 
onstraint has been referred to byothers as 
onsisten
y and transitivity (Szklar
zyk and Heringa, 2004) of mat
hes. Inthe present work we only require 
onsisten
y and transitivity of mat
hes longer than theseed length, e.g. seed mat
hes may overlap.



223.3.2 Data stru
turesOur algorithm begins with an initialization phase that 
reates three data stru
tures.The �rst data stru
ture is a set of Mat
h Re
ords for ea
h mat
h M ∈M. The Mat
hRe
ord stores M , a unique identi�er for M , and two items whi
h will be des
ribed laterin Se
tion 3.3.3: a set of linked mat
h re
ords, and a subsuming mat
h pointer. Thelinked mat
h re
ords are further subdivided into four 
lasses: a left and right supersetlink, and left and right subset links. The subsuming mat
h pointer is initially set to aNULL value. Figure 3 shows a s
hemati
 of the mat
h re
ord.We refer to the se
ond data stru
ture as a Mat
h Position Lookup Table, or P. Thetable has N entries p1, p2, . . . , pN , one per 
hara
ter of S. The entry for pt stores theunique identi�er of the mat
h Mi and x for whi
h Mi.Lx = t or the NULL identi�erif no mat
h has t as a left-end 
oordinate. We 
all the third data stru
ture a Mat
hextension pro
rastination queue, or simply the pro
rastination queue. Again, we denotethe multipli
ity of a mat
h M by |M |. The pro
rastination queue is a binary heap ofmat
hes ordered on |M | with higher values of |M | appearing near the top of the heap.The heap is initially populated with allM ∈M. This queue di
tates the order in whi
hmat
hes will be 
onsidered for extension.3.3.3 Extending mat
hesArmed with the three aforementioned data stru
tures, our algorithm begins the 
hainingpro
ess with the mat
h at the front of the pro
rastination queue. For a mat
h Mi thathas not been subsumed, the algorithm �rst attempts extension to the left, then to theright. Extension in ea
h dire
tion is done separately in an identi
al manner and we
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M₁

M₂

Match Record List

...4

3

3

2

Procrastination Queue 

Left Links Right Links

Subset Superset Subset Superset

null null null null

Subsuming match pointer:

1 2 3 34 14 1 2 3 1 2 [w

1 2 3 34 14 1 2 3 1 2

1 2 3 34 14 1 2 3 1 2

[

w

[

w

[

w [w

1 2 3 344 1 2 3 1 2 1

1 2 3 31 2 3 1 2

(A)

(B)

(C)

(D)

1 1 1 1

1 1 1 1

2 2 2

3 3 3

4 4

Resulting local multiple alignment chain:

M₁.L₁ M₁.L₂ M₁.L₃ M₁.L₄

M₁.R₁ M₁.R₂ M₁.R₃ M₁.R₄

M₂.L₁ M₂.L₂ M₂.L₃

M₂.R₁ M₂.R₂ M₂.R₃

null

M₃

M₄

...

Figure 3: The mat
h extension pro
ess and asso
iated data stru
tures. (A) First wepop the mat
h at the front of the pro
rastination queue: M1 and begin its leftwardextension. Starting with the leftmost position of M1, we use the Mat
h Position LookupTable to enumerate every mat
h with a left-end within some distan
e w. Only M4.L1is within w of M1, so it forms a singleton neighborhood group whi
h we dis
ard. (B)
M1 has no neighborhood groups to the left, so we begin extending M1 to the right.We enumerate all mat
hes within w to the right of M1. M2 lies to the right of 3 of 4
omponents of M1 and so is not subsumed, but instead gets linked as a right-subsetof M1. We add a left-superset link from M2 to M1. (C) On
e �nished with M1 wepop M2 from the front of the pro
rastination queue and begin leftward extension. We�nd the left-superset link from M2 to M1, so we extend the left-end 
oordinates of
M2 to 
over M1 a

ordingly. No further leftward extension of M2 is possible be
ause
M1 has no left-subset links. (D) Beginning rightward extension on M2 we 
onstru
t aneighborhood list and �nd a 
hainable mat
h M3, and a subset M4. We extend M2 toin
lude M3 and mark M4 as in
onsistent and hen
e not extendable. Upon 
ompletionof the 
haining pro
ess we have generated a list of lo
al multiple alignments.



24arbitrarily 
hoose to des
ribe leftward extension �rst. The �rst step in leftward mat
hextension for Mi is to 
he
k whether it has a left superset link. If so, we perform a linkextension as des
ribed later. For extension of Mi without a superset link, we use theMat
h Position Lookup Table P to enumerate all mat
hes within a �xed distan
e w of
Mi. For ea
h 
omponent x = 1, 2, . . . , |Mi| and distan
e d = 1, 2, . . . , w we evaluate �rstwhether pMi.Lx−(d·Mi.Ox) is not NULL. If not then pMi.Lx−(d·Mi.Ox) stores an entry 〈Mj, y〉whi
h is a pointer to neighboring mat
h Mj and the mat
hing 
omponent y of Mj.In order to 
onsider mat
hes on both forward and reverse strands, we must evalu-ate whether Mi.Ox and Mj.Oy are 
onsistent with ea
h other. We de�ne the relativeorientation of Mi.Ox and Mj.Oy as oi,j,x,y = Mi.Ox ·Mj.Oy whi
h 
auses oi,j,x,y = 1 ifboth Mi.Ox and Mj.Oy mat
h the same strand and −1 otherwise. We 
reate a tuple ofthe form 〈Mj, oi,j,x,y, x, d, y〉 and add it to a list 
alled the neighborhood list. In otherwords, the tuple stores (1) the unique mat
h ID of the mat
h with a left-end at sequen
e
oordinate Mi.Lx− (d ·Mi.Ox), (2) the relative orientation of Mi.Ox and Mj.Oy, (3) themat
hing 
omponent x ofMi, (4) the distan
e d betweenMi andMj, and (5) the mat
h-ing 
omponent y of Mj. If Mj = Mi for a given value of d, we stop adding neighborhoodlist entries after pro
essing that one. The neighborhood list is then s
anned to identifygroups of entries with the same mat
h IDMj and relative orientation oi,j,x,y. We refer tosu
h groups as neighborhood groups. Entries in the same neighborhood group that haveidenti
al x or y values are 
onsidered �ties� and need to be broken. Ties are resolved bydis
arding the entry with the larger value of d in the fourth tuple element: we prefer to
hain over shorter distan
es. After tiebraking, ea
h neighborhood group falls into one ofseveral 
ategories:
• Superset: The neighborhood group 
ontains |Mi| separate entries. Mj has higher



25multipli
ity than Mi, e.g. |Mj| > |Mi|. We refer to Mj as a superset of Mi.
• Chainable: The neighborhood group 
ontains |Mi| separate entries. Mj and Mihave equal multipli
ity, e.g. |Mj| = |Mi|. We 
an 
hain Mj and Mi.
• Subset: The neighborhood group 
ontains |Mj| separate entries su
h that |Mj| <

|Mi|. We refer to Mj as a subset of Mi.
• Novel Subset: The neighborhood group 
ontains r separate entries su
h that
r < |Mi| ∧ r < |Mj|. We refer to the portion of Mj in the list as a novel subsetof Mi and Mj be
ause this 
ombination of mat
hing positions does not exist as amat
h in the initial set of mat
hes M.The algorithm 
onsiders ea
h neighborhood group for 
haining in the order givenabove: 
hainable, subset, and �nally, novel subset. Superset groups are ignored, as anysuperset links would have already been 
reated when pro
essing the superset mat
h.Chainable mat
hesTo 
hain mat
h Mi with 
hainable mat
h Mj we �rst update the left-end 
oordinatesof Mi by assigning Mi.Lx ← min(Mi.Lx,Mj.Ly) for ea
h 〈i, j, x, y〉 in the neighborhoodgroup entries. Similarly, we update the right-end 
oordinates: Mi.Rx ← max(Mi.Rx,Mj.Ry)for ea
h 〈i, j, x, y〉 in the group. If any of the 
oordinates in Mi 
hange we make notethat a 
hainable mat
h has been 
hained. We then update the Mat
h Re
ord for Mjby setting its subsuming mat
h pointer to Mi, indi
ating that Mj is now invalid and issubsumed by Mi. Any referen
es to Mj in the Mat
h Position Lookup Table and else-where may be lazily updated to point to Mi as they are en
ountered. If Mj has a leftsuperset link, the link is inherited by Mi and any remaining neighborhood groups with
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hainable mat
hes are ignored. Chainable groups are pro
essed in order of in
reasing dvalue so that the nearest 
hainable mat
h with a superset link will be en
ountered �rst.A spe
ial 
ase exists when Mi = Mj. This o

urs when Mi represents an inverted repeatwithin w nu
leotides. We never allow Mi to 
hain with itself.Subset mat
hesWe defer subset mat
h pro
essing until no more 
hainable mat
hes exist in the neighbor-hood ofMi. A subset mat
hMj is 
onsidered to be 
ompletely 
ontained byMi when forall x, y pairs in the neighborhood group, Mi.Lx ≤Mj.Ly∧Mj.Ry ≤Mi.Rx. When subsetmat
h Mj is 
ompletely 
ontained by Mi, we set the subsuming mat
h pointer of Mj to
Mi. If the subset mat
h is not 
ontained we 
reate a link from Mi to Mj. The subsetlink is a tuple of the form 〈Mi,Mj, x1, x2, . . . , x|Mj |〉 where the variables x1 . . . x|Mj | arethe x values asso
iated with the y = 1 . . . |Mj| from the neighborhood list group entries.The link is added to the left subset links of Mi and we remove any pre-existing rightsuperset link in Mj and repla
e it with the new link.Novel subset mat
hesA novel subset may only be formed when both Mi and Mj have already been maxi-mally extended, otherwise we dis
ard any novel subset mat
hes. When a novel subsetexists mat
hes we 
reate a new mat
h re
ord Mnovel with left- and right-ends equal tothe outward boundaries of Mi and Mj. Rather than extend the novel subset mat
himmediately, we pro
rastinate and pla
e the novel subset in the pro
rastination queue.Re
all that the novel subset mat
h 
ontains r mat
hing 
omponents of Mi and Mj. In
onstru
ting Mnovel, we 
reate links between Mnovel and ea
h of Mi and Mj su
h that
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1 72 3

4
5 6

[

wFigure 4: Interplay between tandem repeats and novel subset mat
hes. There are twoinitial seed mat
hes, one bla
k, one gray. The bla
k mat
h has 
omponents labelled 1-7,and the neighborhood size w is shown with respe
t to 
omponent 7. As we attemptleftward extension of the bla
k mat
h we dis
over the gray mat
h in the neighborhoodof 
omponents 2 and 5 of bla
k. A subset link is 
reated. We also dis
over that some
omponents of the bla
k mat
h are within ea
h others' neighborhood. We 
lassify thebla
k mat
h as a tandem repeat and 
onstru
t a novel subset mat
h with one 
omponentfor ea
h of the four tandem repeat units: {1}, {2, 3, 4}, {5, 6}, {7}.
Mnovel is a left and a right subset of Mi and Mj, respe
tively. The links are tuples ofthe form outlined in the previous se
tion on subset mat
hes.O

asionally a neighborhood group representing a novel subset mat
h may haveMi =

Mj. This 
an o

ur when Mi has two or more 
omponents that form a tandem oroverlapping repeat. If Mi.Lx has Mi.Ly in its neighborhood, and Mi.Ly has Mi.Lz in itsneighborhood, then we refer to {x, y, z} as a tandem unit of Mi. A given tandem unit
ontains between one and |Mi| 
omponents of Mi, and the set of tandem units forms apartition on the 
omponents of Mi. In this situation we 
onstru
t a novel subset mat
hre
ord with one 
omponent for ea
h tandem unit of Mi. If Mi has only a single tandemunit then we 
ontinue without 
reating a novel subset mat
h re
ord. Figure 4 illustrateshow we pro
ess tandem repeats.After the �rst round of 
hainingIf the neighborhood list 
ontained one or more 
hainable groups we enter another roundof extending Mi. The extension pro
ess repeats starting with either link extension or by
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onstru
tion of a new neighborhood list. When the boundaries of Mi no longer 
hange,we 
lassify any subset mat
hes as either subsumed or outside of Mi and treat thema

ordingly. We pro
ess novel subsets. Finally, we may begin extension in the opposite(rightward) dire
tion. The rightward extension is a

omplished in a similar manner,ex
ept that the neighborhood is 
onstru
ted from Mi.Rx instead of Mi.Lx and d rangesfrom −1,−2, . . . ,−w and ties are broken in favor of the largest d value. Where left linkswere previously used, right links are now used and vi
e-versa.Chaining the next mat
hWhen the �rst mat
h popped from the pro
rastination queue has been maximally ex-tended, we pop the next mat
h from the pro
rastination queue and 
onsider it for exten-sion. The pro
ess repeats until the pro
rastination queue is empty. Prior to extendingany mat
h removed from the pro
rastination queue, we 
he
k the mat
h's subsumingmat
h pointer. If the mat
h has been subsumed extension is unne
essary.3.3.4 Link extensionTo be 
onsidered for leftward link extension,Mi must have a left superset link to anothermat
h, Mj. We �rst extend the boundaries of Mi to in
lude the region 
overed by Mjand unlink Mi from Mj. Then ea
h of the left subset links in Mj are examined in turnto identify links that Mi may use for further extension. Re
all that the link from Mi to
Mj is of the form 〈Mj,Mi, x1, . . . , x|Mi|〉. Likewise, a left subset link fromMj to anothermat
h Mk is of the form 〈Mj,Mk, z1, . . . , z|Mk|〉. To evaluate whether Mi may follow agiven link in the left subsets of Mj, we take the set interse
tion of the x and z values forea
h Mk that is a left subset of Mj. We 
an 
lassify the results of the set interse
tion



29as:
• Superset: {x1, . . . , x|Mi|} ⊂ {z1, . . . , z|Mk|} Here Mk links to every 
omponent of
Mj that is linked by Mi, in addition to others.
• Chainable: {x1, . . . , x|Mi|} = {z1, . . . , z|Mk|} Here Mk links to the same set of
omponents of Mj that Mi links.
• Subset: {x1, . . . , x|Mi|} ⊃ {z1, . . . , z|Mk|} Here Mi links to every 
omponent of Mjthat is linked by Mk, in addition to others.
• Novel Subset: {x1, . . . , x|Mi|}∩{z1, . . . , z|Mk|} 6= ∅ Here Mk is neither a superset,
hainable, nor subset relative to Mi, but the interse
tion of their 
omponents in
Mj is non-empty. Mk and Mi form a novel subset.Left subset links in Mj are pro
essed in the order given above. Supersets are neverobserved, be
ause Mk would have already unlinked itself fromMj when it was pro
essed(as des
ribed momentarily). When Mk is a 
hainable mat
h, we extend Mi to in
ludethe region 
overed by Mk and set the subsuming mat
h pointer in Mk to point to Mi.We unlinkMk fromMj, andMi inherits any left superset link thatMk may have. When

Mk is a subset of Mi we unlink Mk from Mj and add it to the deferred subset list tobe pro
essed on
e Mi has been fully extended. Finally, we never 
reate novel subsetmat
hes during link extension be
ause Mk will never be a fully extended mat
h.If a 
hainable mat
h was found during leftward link extension, we 
ontinue for anotherround of leftward extension. If not, we swit
h dire
tions and begin rightward extension.



303.3.5 Time 
omplexityA neighborhood list may be 
onstru
ted at most w times per 
hara
ter of S, and 
onstru
-tion uses sorting by key 
omparison, giving O(wN logwN) time and spa
e. Similarly,we spend O(wN logwN) time performing link extension. The upper bound on the totalnumber of 
omponents in the �nal set of mat
hes is O(wN). Thus, the overall time
omplexity for our �ltration algorithm is O(wN logwN).3.4 ResultsWe have 
reated a program 
alled pro
rastAligner for Linux, Windows, and Ma
 OS Xthat implements the des
ribed algorithm. Our open-sour
e implementation is availableas C++ sour
e 
ode li
ensed under the GPL.We 
ompare the performan
e of our method in �nding Alu repeats in the humangenome to an Eulerian path method for lo
al multiple alignment (Zhang and Waterman,2005). The fo
us of our algorithm is e�
ient �ltration, thus we use a s
oring metri
that evaluates the �ltration sensitivity and spe
i�
ity of the ungapped alignment 
hainsprodu
ed by our method. We 
ompute sensitivity as the number of Alu elements hit bya mat
h, out of the total number of Alu elements. We 
ompute spe
i�
ity as the ratioof mat
h 
omponents that hit an Alu to the sum of mat
h multipli
ity for all mat
hesthat hit an Alu. Thus, we do not penalize our method for �nding legitimate repeatsthat are not in the Alu family.The 
omparison between pro
rastAligner and the Eulerian method is ne
essarilyindire
t, as ea
h method was designed to solve di�erent (but related) problems. TheEulerian method uses a de Bruijn graph for �ltration, but goes beyond �ltration to
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ompute gapped alignments using banded dynami
 programming. We report s
ores fora version of the Eulerian method that 
omputes alignments only on regions identi�edby its de Bruijn �lter. The results suggest that by using our �ltration method, thesensitivity of the Eulerian path lo
al multiple aligner 
ould be signi�
antly improved.A se
ond important distin
tion is that our method reports all lo
al multiple alignment
hains in its allotted runtime, whereas the Eulerian method identi�es only a singlealignment.We also test the ability of our method to provide a

urate an
hors for genomealignment. Using a manually 
urated alignment of 144 Hepatitis C virus genome se-quen
es (Kuiken et al., 2005), we measure the an
horing sensitivity of our method asthe fra
tion of pairwise positions aligned in the 
orre
t alignment that are also presentin pro
rastAligner 
hains. We measure positive predi
tive value as the number ofmat
h 
omponent pairs that 
ontain 
orre
tly aligned positions out of the total num-ber of mat
h 
omponent pairs. pro
rastAligner may generate legitimate mat
hes inthe repeat regions of a single genome. The PPV s
ore penalizes pro
rastAligner foridentifying su
h legitimate repeats, whi
h subsequent genome alignment would have todisambiguate. Using a seed size of 9 and w = 27, pro
rastAligner has a sensitivity of63% and PPV of 67%.3.5 Dis
ussionWe have des
ribed an e�
ient method for lo
al multiple alignment �ltration. The 
hainsof ungapped alignments that our �lter outputs may serve as dire
t input to multiplegenome alignment algorithms. The test results of our prototype implementation on
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ession Length Rep Fm Alu (bp) Div, % Met Sn % Sp % T (s) Sw wAF435921 22 Kb 28 10 261 (69) 15.0 (6.4) Eul 96.3 99.4 1 - -pro 100 95.9 1 9 27Z15025 38 Kb 52 13 245 (85) 15.7 (5.7) Eul 98.6 96.7 4 - -pro 100 82.5 2 9 27AC034110 167 Kb 87 18 261 (72) 12.2 (5.9) Eul 93.5 95.2 14 - -pro 100 97.9 3 15 45AC010145 199 Kb 118 13 277 (55) 15.0 (5.6) Eul 85.2 93.7 32 - -pro 99.1 99.2 3 15 45Hs Chr 22 1 Mbp 404 32 252 (79) 15.2 (6.1) Eul 72.4 99.4 85 - -pro 98.3 97.3 20 15 45Table 2: Performan
e of pro
rastAlign and the Eulerian path approa
h on Alu repeats.Rep: total number of Alu elements; Fm: number of Alu families; Alu: average Alulength in bp (S.D.); Div: average Alu divergen
e (S.D.); Met: alignment method, Eul =Eulerian, pro = pro
rastAligner; Sn: sensitivity; Sp: spe
i�
ity; T: 
ompute time; Sw:palindromi
 seed weight; w: max gap size. Alus were identi�ed by RepeatMasker (Jurkaet al., 2005). We report data for the fast version of the Eulerian path method as given byTable 1 of (Zhang and Waterman, 2005). Sensitivity and spe
i�
ity of pro
rastAlignwas 
omputed as des
ribed in the text.Alu sequen
es demonstrate improved sensitivity over de Bruijn �ltration. A promis-ing avenue of further resear
h will be to 
ouple our �ltration method with subsequentre�nement using banded dynami
 programming.The alignment s
oring s
heme we use 
an rank alignments by information 
ontent,however a biologi
al interpretation of the s
ore remains di�
ult. If a phylogeny andmodel of evolution for the sequen
es were known a priori then a biologi
ally relevants
oring s
heme 
ould be used (Prakash and Tompa, 2005). Unfortunately, the phy-logeneti
 relationship for arbitrary lo
al alignments is rarely known, espe
ially amongrepetitive elements or gene families within a single genome and a
ross genomes. Itmay be possible to use simulation and MCMC methods to s
ore alignments where the



33phylogeny and model of evolution is unknown a priori, but doing so would be 
omputa-tionally prohibitive for our appli
ation.3.6 A
knowledgmentsAn abridged version of this 
hapter appeared as Darling, Treangen, Zhang, Kuiken,Messeguer, and Perna (2006). AED designed the resear
h and implemented pro
rastAligner.TJT and AED designed the �ltration and s
oring algorithms and 
oauthored the manus
ript.LZ 
omputed optimal palindromi
 seed patterns.



34Chapter 4
Alignment of 
losely-related genomes
Genome alignment is a fundamentally di�erent task than sequen
e alignment. Thenature of genome evolution violates basi
 assumptions made by traditional alignmentmethods, su
h as 
omplete 
ollinearity and 
onsisten
y in the phylogeneti
 signal. To
ompensate, a genome alignment method must in
lude not just sequen
e alignment, buta method for dete
ting segmental homology as well, and it must be robust to varian
ein the phylogeneti
 signal.A se
ond distinguishing feature of genome alignment stems from the fa
t that genomesequen
es are typi
ally mu
h larger than the sequen
es for whi
h dynami
-programmingbased alignment methods were originally designed. The well-known Needleman-Wuns
halgorithm to �nd the best global alignment of a pair of sequen
es requires O(N2) 
om-pute time (Needleman and Wuns
h, 1970). For sequen
es as large as 10Kbp-100Kbpmodern 
omputational hardware 
an 
ompute the full s
ore matrix and tra
e ba
k theoptimal alignment path. However, ba
terial genome sequen
es typi
ally range in sizefrom 1Mbp to 10Mbp, while eukaryoti
 genomes 
an be anywhere between 1Mbp andseveral hundred gigabases in size. Computation of a full alignment s
ore matrix usingdynami
 programming for su
h sequen
es is too time-
onsuming on modern 
omputehardware. Although dynami
 programming approa
hes that exploit parallel hardwarehave been used with some su

ess (Martins et al., 2001), an approa
h that is tra
table



35on 
ommodity 
ompute hardware is strongly preferable.To e�e
tively trim the overall alignment sear
h spa
e without sa
ri�
ing alignmentquality, a heuristi
 
ommonly referred to as an
hored alignment (Del
her et al., 1999)or banded dynami
 programming (Zhang et al., 2000) was devised. An
hored alignmenttypi
ally begins by using a fast string-mat
hing method to �nd high-s
oring lo
al align-ments. It then restri
ts the 
omputation of s
ores in the dynami
 programming matrixto the regions around the high-s
oring lo
al alignments. An
hored alignment methodsoperate under the assumption that the optimal global alignment is very likely to in-
lude the high-s
oring lo
al alignments. In general, an
horing heuristi
s yield qualityalignments in a fra
tion of the 
ompute time otherwise ne
essary to 
ompute an optimalalignment (Ureta-Vidal et al., 2003). As su
h, all modern genome alignment approa
hesuse an
horing heuristi
s.4.0.1 The Mauve algorithmOur development of a multiple genome alignment algorithm was motivated by the re
entsequen
ing of a group of nine enteroba
teria. At the time, existing an
hored alignmentmethods were unable to 
ope with the substantial amount of genomi
 rearrangement andlateral gene transfer that these mi
robes have experien
ed. Other aspe
ts of the genomi
biology of these mi
robes su
h as the presen
e of a small number of large-repetitive re-gions �gured prominently into our algorithm design. We refer to the presently des
ribedalignment algorithm as �Mauve.�When sear
hing for alignment an
hors a
ross multiple genomes, problems arise if aparti
ular repetitive motif o

urs numerous times in ea
h sequen
e be
ause it be
omesun
lear whi
h 
ombination of regions to align. Our target data set of enteri
 genomes



36are known to have signi�
ant repetitive regions su
h as ribosomal RNA operons andprophages. For a repetitive element existing r times in ea
h of G genomes, there will be
rG possible alignment an
hors, of whi
h at most r represent truly orthologous an
hors.As more genomes are aligned, the number of possible an
hors grows exponentially whilethe number of an
hors that 
an be in
luded in an alignment of orthologous sequen
esremains 
onstant. Mauve avoids this problem by using approximate Multiple MaximalUnique Mat
hes (multi-MUMs) of some minimum length k as alignment an
hors. Ap-proximate multi-MUMs are subsequen
es shared by two or more genomes that mat
ha

ording to a seed pattern. As des
ribed in the previous 
hapter, a seed pattern spe
i�esa pattern of nu
leotides that must mat
h. For example 11*11*11* would spe
ify a seedof length 9 and weight 6 where every nu
leotide ex
ept the third, sixth, and ninth mustmat
h (Ma et al., 2002b). Furthermore, at least one realization of the mat
hing seedpattern 
ontained in the mat
hing subsequen
e must o

ur only on
e in those genomesto satisfy the uniqueness property. We refer to mat
hes whi
h satisfy these propertiesas approximate multi-MUMs be
ause they represent unique subsequen
es whi
h mat
hea
h other approximately, tolerating a small amount of degenera
y. Finally, the approxi-mate multi-MUMs must be bounded on either side by a region without any seed mat
hes.For the sake of brevity, we will simply use multi-MUMs to refer to approximate multi-MUMs unless otherwise noted. Be
ause using unique seeds redu
es an
horing sensitivityin 
onserved repetitive regions and regions that have undergone numerous nu
leotidesubstitutions or indels, Mauve employs a re
ursive an
horing strategy that progressivelyredu
es k, sear
hing for smaller an
hors in the remaining unmat
hed regions.The enteroba
terial genomes are known to have undergone signi�
ant genome re-arrangements as des
ribed in their genome papers. Algorithms used by other global



37multiple alignment systems an
hor their alignments by sele
ting the highest s
oring
ollinear 
hain of lo
al alignments (Hohl et al., 2002, Bray and Pa
hter, 2003, Brudnoet al., 2003a). Su
h methods pre
lude identi�
ation of the rearrangements known toexist in our data set and many others. To su

essfully align our target genomes, the an-
hor sele
tion method should identify 
onsistent (
ollinear) subsets of lo
al alignments touse as an
hors while �ltering out unlikely lo
al alignments. Ideally, an algorithm wouldidentify a maximum-weight set of an
hors su
h that ea
h 
ollinear subset of an
horsmeets some minimum-weight 
riteria. This problem 
an be 
ast as the graph-theoreti
Maximum Subgraph with Large Girth problem and thus an exa
t solution is 
omputa-tionally intra
table (Raphael et al., 2004, Pevzner et al., 2004). Mauve uses a greedybreakpoint elimination algorithm to generate an approximate solution to the maximum-weight non-
ollinear an
horing problem.To align the intervening regions of sequen
e between an
hors our method employsthe progressive dynami
 programming approa
h of Clustal-W (Thompson et al., 1994).In progressive alignment, a phylogeneti
 guide tree spe
i�es the optimal progression ofsequen
es to align when building the multiple alignment. Rather than re
al
ulating aguide tree during ea
h alignment of intervening regions, Mauve infers a single globalphylogeneti
 tree. Using a single average genome phylogeny not only saves 
omputetime but re
ent results show it may yield a more robust phylogeny (Rokas et al., 2003).The alignment algorithm 
an be summarized as follows:1. Find lo
al alignments (multi-MUMs)2. Use the lo
al alignments to 
al
ulate a phylogeneti
 guide tree



383. Sele
t a subset of the lo
al alignments to use as an
hors�these an
hors are parti-tioned into lo
ally 
ollinear blo
ks (LCBs)4. Perform re
ursive an
horing to identify additional alignment an
hors within andoutside ea
h LCB5. Perform a progressive alignment of ea
h LCB using the guide treeThe following se
tions give an overview of ea
h step in the alignment pro
ess.Finding lo
al alignmentsMauve �nds multi-MUMs using a simple seed-and-extend hashing method similar tothat used by GRIL (Darling et al., 2004b). In addition to �nding mat
hing regions thatexist in all genomes, the algorithm identi�es mat
hes that exist in only a subset ofthe genomes being aligned. While the seed-and-extend algorithm has time 
omplexity
O(G2n + Gn logGn) where G is again the number of genomes and n average genomelength, it is very fast in pra
ti
e. Finding multi-MUMs typi
ally 
onsumes less than aminute per ba
terial size genome, and 3-4 hours per mammalian genome on a standardworkstation 
omputer. Appendix B 
ontains a detailed des
ription of the mat
hingalgorithm, whi
h has been extended to approximate string mat
hing with gapped seedpatterns. The resulting lo
al-multiple alignments are similar in nature to the alignmentsprodu
ed by pro
rastAligner, ex
ept that internal gaps are not permitted.Formally we de�ne ea
h multi-MUM as a tuple 〈L, S1, ...SG〉 where L is the lengthof the multi-MUM, and Sj is the left-end position of the multi-MUM in the jth genomesequen
e. We denote the resulting set of multi-MUMs as M = {M1...MN}. The ithmulti-MUM in M is referred to as Mi. To refer to the length of Mi we use the notation
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Mi.L and similarly, we refer to the left end of Mi in the jth genome sequen
e usingthe notation Mi.Sj. If multi-MUM Mi in
ludes a region in the reverse 
omplementorientation in sequen
e j, we de�ne the sign of Mi.Sj to be negative. Finally, if multi-MUM Mi does not exist in sequen
e j, we de�ne Mi.Sj to be 0 � the left-most positionin any genome is 1 (or -1).Cal
ulating a guide treeThe method des
ribed to �nd lo
al alignments di�ers from that used by GRIL in thatit 
an identify lo
al alignments in subsets of the genomes under study. Mauve exploitsthe information provided by subset multi-MUMs as a distan
e metri
 to 
onstru
t aphylogeneti
 guide tree using Neighbor Joining (Saitou and Nei, 1987).Spe
i�
ally, the ratio of base pairs shared between two genomes to their genomelength provides an estimate of sequen
e similarity. A log transformation 
onverts thesimilarity estimate to a distan
e value for the Neighbor Joining distan
e matrix. Be
ausemulti-MUMs 
an overlap ea
h other, 
al
ulating the similarity metri
 requires that over-laps among multi-MUMs are resolved su
h that ea
h mat
hing residue 
ounts only on
e.To resolve an overlap, one mat
h remains un
hanged while the overlapping portion ofthe other mat
h gets trimmed o� and its remaining portion 
an still be 
ounted. Mauveresolves overlaps in favor of the higher multipli
ity mat
h, where multiplicity(Mi) isde�ned as the number of genomes for whi
h Mi.Sj 6= 0. If the multipli
ity of twooverlapping mat
hes is identi
al, the overlap is resolved in favor of the longer mat
h.After eliminating overlaps in M , we 
an 
ount the number of mat
hing residues
Matchx,y between two genomes Gx and Gy as Matchx,y =

∑|M |
i=1(Mi.Sx)

0(Mi.Sy)
0Mi.L.The distan
e between genomes 
an then be 
al
ulated as dmatch(Gx, Gy) = − log Matchx,y

2min(|Gx|,|Gy |)
.



40This de�nition of distan
e is similar to that used by others for whole-genome phylogenyre
onstru
tion (Henz et al., 2005).Be
ause the an
hor sele
tion method des
ribed below operates only on multi-MUMswith multiplicity(Mi) = G, the guide tree is 
al
ulated prior to an
hor sele
tion so thatit 
an take advantage of multi-MUMs with multiplicity(Mi) < G.Sele
ting a set of an
horsIn addition to lo
al alignments that are part of truly homologous regions, the set of multi-MUMs M may 
ontain spurious mat
hes arising due to random sequen
e similarity. Thisstep attempts to �lter out su
h spurious mat
hes while determining the boundaries oflo
ally 
ollinear blo
ks (LCB). An LCB 
an be 
onsidered a 
onsistent subset of the lo
alalignments in M. Formally, an LCB is a sequen
e of lo
al alignments lcb ⊆ M, lcb =

{M1,M2, ...,M|lcb|} that satis�es a total ordering property su
h that Mi.Sj ≤ Mi+1.Sjholds for all i, 1 ≤ i ≤ |lcb| and all j, 1 ≤ j ≤ G. For a given set of multi-MUMs,the minimum partitioning of M into 
ollinear blo
ks 
an be found through breakpointanalysis (Blan
hette et al., 1997). Breakpoint analysis requires that mat
hing regionsexist in all genomes under study, so multi-MUMs with multipli
ity less than G areremoved from M before performing this step of the algorithm.Given a minimum weight 
riteriaMinimumWeight ≥ 0, Mauve uses a greedy break-point elimination algorithm to remove low-weight 
ollinear blo
ks of M. As part of step3 above, Mauve performs the following substeps repeatedly until all 
ollinear blo
ks in
M meet the minimum weight requirement:3.1 Determine a partitioning of M into 
ollinear blo
ks CB3.2 Cal
ulate the weight, w(cbi) of ea
h 
ollinear blo
k cbi ∈ CB



413.3 Identify the minimum weight 
ollinear blo
k: let z = mincb∈CBw(cb)3.4 Stop if w(z) ≥MinimumWeight3.5 Delete the minimum weight 
ollinear blo
k: remove ea
h multi-MUM M ∈ zfrom M3.6Where breakpoints have been eliminated by removing z merge surrounding 
ollinearblo
ks and update their weights3.7 Go to step 3.3Here w(cb) is de�ned as ΣMi∈cbMi.L. Step 3.1 is identi
al to the method used byGRIL for partitioning M into 
ollinear subsets and is des
ribed in Appendix C.In order to provide a fair measure of weight, ea
h nu
leotide in an LCB should 
ountonly on
e toward its weight. For this reason, breakpoint determination uses the set ofnon-overlapping multi-MUMs that remain after guide tree 
al
ulation. By default the
MinimumWeight parameter is set to 3k, where k is the seed length used during theinitial sear
h for multi-MUMs. We 
hose 3k as a default minimum weight be
ause it ap-pears to �lter the majority of spurious mat
hes in data sets we have evaluated. Figure 5illustrates the pro
ess of identifying 
ollinear blo
ks of multi-MUMs and how removinga low-weight 
ollinear region 
an eliminate a breakpoint. The resulting 
ollinear setsof an
hors delineate the LCBs that are used to guide the remainder of the alignmentpro
ess.Re
ursive an
horing and gapped alignmentThe initial an
horing step may not be sensitive enough to dete
t the full region ofhomology within and surrounding the LCBs. In parti
ular, repetitive regions and regionswith frequent nu
leotide substitutions are likely to la
k su�
ient an
hors for 
omplete
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B)  Minimum partitioning into collinear blocks:

C)  After removing block 3:

A)  The initial set of matching regions:

1

1

1

1

1

1

1

1

1

3

3

3

2

2

2

2

2

2

2

2

2

4

4

4

5

5

5

5

5

5

1

1

1

1

1

1

1

1

1

5

5

5

5

5

5Figure 5: A pi
torial representation of greedy breakpoint elimination in 3 genomes. A)The algorithm begins with the initial set of lo
al alignments (multi-MUMs) representedas 
onne
ted blo
ks. Blo
ks below a genome's 
enter line are inverted relative to thereferen
e sequen
e. B) the mat
hes are partitioned into a minimum set of 
ollinearblo
ks. Ea
h sequen
e of identi
ally-
olored blo
ks represents a 
ollinear set of mat
hingregions. One 
onne
ting line is drawn per 
ollinear blo
k. Blo
k 3 (yellow) has a lowweight relative to other 
ollinear blo
ks. C) As low weight 
ollinear blo
ks are removed,adja
ent 
ollinear blo
ks 
oales
e into a single blo
k, potentially eliminating one or morebreakpoints. Gray regions within 
ollinear blo
ks are targeted by re
ursive an
horing.



43alignment. Using the existing an
hors as a guide, two types of re
ursive an
horingare performed repeatedly. First, regions outside of LCBs are sear
hed to extend theboundaries of existing LCBs and identify new LCBs. In �gure 1C, this 
orresponds tosear
hing the white regions outside LCBs. Se
ond, unan
hored regions within LCBsare sear
hed for additional alignment an
hors. This 
orresponds to sear
hing the greyregions within LCBs in Figure 1C.When sear
hing for additional an
hors outside existing LCB boundaries, two fa
-tors 
ontribute to Mauve �nding additional an
hors. First, Mauve uses a smaller valueof the mat
h seed size k. Se
ond, only the regions outside existing LCB boundariesare sear
hed, so regions not unique in the entire genome may be unique within re-gions outside LCBs. Not only 
an the range of existing LCBs be extended by sear
hingregions outside LCB boundaries, but new LCBs that meet the minimum weight re-quirement 
an be identi�ed as well. To perform the sear
h, the outside sequen
es inea
h genome are 
on
atenated into a single sequen
e per genome. We refer to the setof 
on
atenated sequen
es as S and the 
on
atenated sequen
e from the jth genomeas Sj. Multi-MUMs of minimum length k are found, where k = seed_size(S) − 2,and seed_size(S) = log2 (ΣG
j=1

length(Sj)

G
). Be
ause the left-end 
oordinates of ea
h newmulti-MUM are de�ned in terms of the 
on
atenated sequen
e they must be transposedba
k into the original 
oordinate system. Also, any mat
hes spanning two 
on
atenatedsubsequen
es must be split. The transposed multi-MUMs are added to M and iterativeremoval of low-weight 
ollinear subsets is performed as above. The pro
ess of sear
h-ing regions outside LCBs is repeated until Σcs∈CSw(cs) remains the same during twosu

essive iterations of the sear
h.In addition to missing an
hors outside the boundaries of LCBs, the initial an
horing



44pass may have la
ked the sensitivity to �nd an
hors in large regions within ea
h LCB.Be
ause progressive alignment requires relatively dense an
hors (at least one an
horper 10Kbp of sequen
e), Mauve performs re
ursive an
horing on the intervening regionsbetween ea
h pair of existing an
hors. Not only does this step an
hor more divergentregions of sequen
e, it also lo
ates an
hors in 
onserved repeats be
ause many k-mersthat are not unique in the whole genome are likely to be unique within the interveningregions between existing an
hors.Unlike other genome aligners whi
h perform a �xed number of re
ursive passes witha pre-determined sequen
e of an
hor sizes, Mauve 
al
ulates a minimum an
hor sizebased on the length of the intervening sequen
e and stops re
ursive an
horing wheneither no additional an
hors are found or when the intervening region is shorter thana �xed length, defaulting to 200bp. During ea
h re
ursive an
hor sear
h new LCBsmay be found, for example in the 
ase of lo
al rearrangements or in-pla
e inversion, andthese new LCBs must also meet the MinimumWeight requirement. For ea
h re
ursivesear
h, k is 
al
ulated as above: k = seed_size(S) where S is the set of interveningsequen
es, one per genome. By dynami
ally 
al
ulating the value of k, Mauve ensuresthat k is sized appropriately for the intervening region. Sele
ting k too large preventsdis
overy of multi-MUMs in polymorphi
 regions, whereas sele
ting k too small in
reasesthe likelihood that k-mers will not be unique in the intervening region.Armed with a 
omplete set of alignment an
hors, Mauve performs a Clustal-W pro-gressive alignment using the genome guide tree 
al
ulated previously. The progressivealignment algorithm is exe
uted on
e for ea
h pair of adja
ent an
hors in every LCB,
al
ulating a global alignment over ea
h LCB. Tandem repeats less than 10Kbp in totallength are aligned during this phase. Regions larger than 10Kbp without an an
hor are



45ignored.4.1 Alignment resultsThe Mauve genome alignment pro
edure results in a global alignment of ea
h lo
ally
ollinear blo
k that has sequen
e elements 
onserved among all the genomes under study.Nu
leotides in any given genome are aligned only on
e to other genomes suggesting or-thology among aligned residues�Mauve makes no attempt to align paralagous regions.The remaining unaligned regions may be lineage-spe
i�
 sequen
e, or 
onserved or par-alagous repetitive regions and 
an be identi�ed as su
h during subsequent pro
essingwith other tools. Large ( > 10Kbp) regions introdu
ed to a subset of the genomes byhorizontal transfer are not aligned by Mauve be
ause they do not have alignment an-
hors 
onserved among all sequen
es. Both large and small regions existing in only asubset of the genomes and that also underwent lo
al rearrangement remain unaligned.Alignment of 9 enteroba
teriaWe applied Mauve to align the the 9 target enteroba
terial genomes shown in Fig-ure 6. Previous studies of these genomes indi
ates they underwent signi�
ant genomerearrangement, horizontal transfer, and other re
ombination (Perna et al., 2001, Denget al., 2003). Mauve 
onsumed 3 hours to align the 9 taxa on a 2.4GHz 
omputer with1GB of RAM. The alignment of the 9 taxa reveals 45 LCBs with a minimum weight of69. Figure 6 shows the guide tree generated for these spe
ies. The visualization of thegenome rearrangement stru
ture generated by the Mauve viewer is shown in Figure 7.We 
an qui
kly visually 
on�rm several known inversions su
h as the O157:H7 EDL933
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E. coli K12 MG1655
4,639,221 bp

(Blattner et al. 1997)

S. flexneri 2A
4,607,203 bp

(Jin et al. 2002)

S. flexneri 2A 2457T
4,599,354 bp

(Wei et al. 2003) E. coli O157:H7 EDL933
5,524,977 bp

(Perna et al. 2001)

E. coli O157:H7 VT2 Sakai
5,498,450 bp

(Hayashi et al. 2001)

E. coli CFT073
5,231,428 bp

(Welch et al. 2002)

S. enterica Typhimurium LT2
4,857,432 bp

(McClelland et al. 2001)

S. enterica Typhi Ty2
4,791,961 bp

(Deng et al. 2003)

S. enterica Typhi CT18
4,809,037 bp

(Parkhill et al. 2001)

Figure 6: An unrooted phylogeneti
 tree relating nine enteri
 genomes. The tree is aphylogeneti
 guide tree 
al
ulated using Neighbor-Joining on a genome-
ontent distan
emetri
.
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E. coli K12 MG1655

E. coli O157:H7 EDL933

E. coli O157:H7 VT-2 Sakai

E. coli CFT073

Shigella flexneri 2a

Shigella flexneri 2a 2457T

Salmonella enterica typhi CT18

Salmonella enterica typhi Ty2

Salmonella enterica Typhimurium LT2Figure 7: Mauve visualization of an alignment of the 9 target enteroba
teria shown inFigure 6. Ea
h genome sequen
e is plotted along a horizontal tra
k. Lo
ally 
ollinearblo
ks in ea
h genome (regions without rearrangements) are surrounded by a 
oloredbox and 
onne
ted to the homologous region in ea
h of the other genome sequen
es.Blo
ks below a genome's 
enter line are in the reverse 
omplement orientation relativeto the referen
e genome. Within ea
h lo
ally 
ollinear blo
k, a similarity plot showsthe average sequen
e 
onservation in that region. The Shigella and Salmonella genomeshave undergone more genome rearrangements than that of E. 
oli, likely due to thepresen
e of spe
i�
 mobile geneti
 elements.



48inversion relative to K-12 (Perna et al., 2001) and the large inversion about the originof repli
ation among the S. enteri
a serovars Typhi CT18 and Ty2 (Deng et al., 2003).We pro
eeded to extra
t 
onserved ba
kbone sequen
e from the alignment. Again,ba
kbone is de�ned as regions of the alignment 
ontaining more than 50 gap-free 
olumnswithout stret
hes of 50 or more 
onse
utive gaps in any single genome sequen
e. Underthis de�nition, the 9 enteroba
teria have 2.86Mbp of 
onserved ba
kbone sequen
e bro-ken into 1252 ba
kbone segments. A
ross the ba
kbone the level of nu
leotide identity ishigh, above 95% within ea
h Es
heri
hia and Salmonella genus, and about 70% a
rossthe two genuses (data not shown).4.1.1 Alignment of mammalian genomesWe applied the Mauve genome alignment system to perform a whole-genome align-ment of the mouse, rat, and human genomes. The RepeatMasked assemblies of human(NCBI 35), mouse (NCBI 33), and rat (RGSC 3.4) were sear
hed for unique 3-wayseed mat
hes on the forward and reverse strands using the palindromi
 seed pattern:11111*111*11*1*11*111*11111. This seed pattern is the most sensitive pattern atweight 21 for sequen
es with 65%-75% identity, as des
ribed in Chapter 3. Initial seedmat
hes were maximally extended in ea
h dire
tion until the seed pattern no longermat
hed at any overlapping position. A total of 922,081 ungapped 3-way alignments
ontaining unique sequen
e resulted. The initial set of 3-way mat
hes gave rise to 567,782LCBs, to whi
h we applied greedy breakpoint elimination to remove all LCBs up to aminimum weight of 55, yielding a baseline set of 520,423 3-way mat
hes that 
ompose6483 LCBs. The 
omplete analysis 
onsumed approximately 24 hours on a 1.6GHzLinux PC with 2.5GB memory and two hard disks used for an external-sort of the string
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0m 570m 1140m 1720m 2290m 2860m

Homo sapiens

Rattus norvegicus

Mus musculus

Figure 8: Mauve visualization of lo
ally 
ollinear blo
ks identi�ed between 
on
atenated
hromosomes of the mouse, rat, and human genomes. Ea
h of the 1,251 blo
ks shownhere have a minimum weight of 90. Red verti
al bars demar
ate inter
hromosomalboundaries. The Mauve rearrangement viewer enables users to intera
tively zoom inon regions of interest and examine the lo
al rearrangement stru
ture. The 
omputation
onsumed approximately 24 hours on a 1.6GHz workstation with 2.5GB memory.mat
hing data stru
tures.We further applied greedy breakpoint elimination to the baseline set of 6,483 LCBs,re
ording the observed genomi
 permutation at ea
h su

essively higher LCB weight upto a minimum weight of 100,000. At minimum weight 97,673 (the last weight before100,000), there are 75 3-way LCBs among the mouse, rat, and human genomes. Atweights larger than 500, the LCB weight roughly 
orresponds to the overall 
hromosomallength of an LCB, with the average LCB 
hromosomal length being 100-1000x the LCBweight. A visualization of the overall mammalian LCB stru
ture is shown in Figure 8.Complete 3-way mammalian genome alignments based on the initial set of 6,483 LCBswere 
omputed using 24 hours of parallel 
ompute time on a 96-CPU Orion Deskside
luster. The results are available from http://gel.ahabs.wis
.edu/~koadman/orion_results



504.2 Dis
ussionWith the advent of genome sequen
ing a new type of sequen
e alignment problem, thatof whole genome 
omparison, has emerged. Early approa
hes to genome alignment weredesigned to ta
kle dramati
ally in
reased sequen
e lengths, but did not 
onsider the ad-ditional types of evolutionary events observed on the genome s
ale. Genome rearrange-ments, horizontal transfer, and dupli
ation obfus
ate orthology. As genomes 
ontinue tobe sequen
ed, automati
 and a

urate identi�
ation of genome rearrangements be
omesin
reasingly important, espe
ially as high levels of rearrangement have been observedamong both eukaryotes and prokaryotes (Pevzner and Tesler, 2003b, Lefebvre et al.,2003, Pevzner and Tesler, 2003a).The Mauve genome alignment method represents a �rst step toward multiple genome
omparison in the presen
e of large-s
ale evolutionary events. It is 
apable of aligning
onserved regions in the presen
e of genome rearrangement, and appears to s
ale ef-�
iently to long genomes. However, our experien
e with Mauve 
learly indi
ates thatmany 
hallenges remain in genome alignment. A more sensitive lo
al alignment te
h-nique would permit our method to be applied to more distantly related organisms. Amethod for determining breakpoints with lo
al alignments existing in a subset of thegenomes would fa
ilitate an
hored alignment of the large lineage-spe
i�
 regions 
ur-rently missed.Some organisms are known to have small, lo
al sequen
e rearrangements su
h asreordering of protein domains in 
oding regions. In su
h 
ases, the proximity of therearrangement to neighboring homologous sequen
e should 
learly be 
onsidered. Othertypes of rearrangement do not exhibit lo
ality bias: symmetri
 inversions about the



51origin and terminus of repli
ation and rearrangements mediated by mobile elements are
ommon in prokaryotes and 
an move sequen
e to distant parts of the genome. A moresophisti
ated rearrangement s
oring method may attempt to s
ore a parti
ular pattern ofan
hors based on the sequen
e of rearrangement events and re
ombination me
hanismssuggested by that pattern of an
hors.4.3 A
knowledgmentsPortions of this 
hapter appeared as Darling, Mau, Blattner, and Perna (2004a).



52Chapter 5
Alignment of genomes withlineage-spe
i�
 
ontent
5.1 Introdu
tionAdvan
es in genome sequen
ing te
hnology have made large-s
ale sequen
ing of mi
ro-bial genomes not only possible, but relatively a�ordable (Margulies et al., 2005, Shendureet al., 2005). It has been estimated that 
urrent genome sequen
es represent less than1% of global mi
robial spe
ies diversity (Tettelin et al., 2005). Studies aiming to 
ata-log environmental sequen
e diversity have already produ
ed initial data (Venter et al.,2004, Tringe et al., 2005), and more are expe
ted to follow. Genomi
 sequen
e 
ompar-ison stands to provide a framework for understanding the biology of newly sequen
edorganisms through 
omparison to model organisms.In the 
ontext of 
omparative genomi
s, whole genome alignments solve an importantproblem. While it may be possible to assess the gene 
ontent of an organism using gene-based re
ipro
al-best-hit BLAST methods, su
h approa
hes are error-prone (Koski andGolding, 2001), negle
t important non-geni
 
ontent and perhaps more importantly,frequently negle
t 
omparison of overall genome stru
ture. Genome alignment, on theother hand, provides a framework for simultaneous 
omparison of geni
 and non-geni




53Organism Genome size w/Plasmids A

essionE. 
oli K12 MG1655 4654221 U00096E. 
oli O157:H7 EDL933 5623806 AE005174E. 
oli O157:H7 Sakai 5594477 BA000007E. 
oli HS 4643538 AAJY00000000E. 
oli E24377A 4980187 AAJZ00000000E. 
oli CFT073 5231428 AE014075E. 
oli UTI89 5179971 CP000243Shigella boydii Sb227 4646520 CP000036Shigella �exneri 2457T 4988914 AE014073Shigella �exneri 301 4828821 AE005674Shigella dysenteriae Sd197 4551958 CP000034Shigella sonnei Ss046 5039661 CP000038Salmonella enteri
a Choleraesius B67 4944000 AE017220Salmonella enteri
a Typhi Ty2 4791961 AE014613Salmonella enteri
a Typhi CT18 5133713 AL513382Salmonella typhimurium LT2 4951371 AE006468Salmonella paratyphi A ATCC9150 4585229 CP000026Yersinia pestis Antiqua 4879836 CP000308Yersinia pestis Nepal 516 4646286 CP000305Yersinia pestis 91001 4803217 AE017042Yersinia pestis CO92 4829855 AL590842Yersinia pestis KIM 4781914 AE009952Yersinia pseudotuber
ulosis IP31758 4721828 AAKT00000000Yersinia pseudotuber
ulosis IP32953 4840899 BX936398Erwinia 
hrysanthemi 3937 4922802 -Erwinia 
aratovora SCRI1043 5064019 -Table 3: Twenty-�ve publi
ly-available, �nished enteri
 genomes sequen
es form ourtarget set for multiple genome alignment.
ontent and genome stru
ture. Genome alignment fa
es a 
hallenge, however, as most
urrent methods do not a

ount for large-s
ale mutational for
es that disrupt gene order,
reate paralogs, and in
orporate novel 
ontent into genomi
 sequen
es. Furthermore, ofthe genome alignment methods that do exist, few have been integrated into a single
oherent analysis methodology, limiting their widespread use.In the present study, we fo
us on a large set of enteri
 ba
teria (listed in Table 3)whose genomes have proven unalignable using previous te
hniques. This group in
ludes



54mi
robes whose rates and patterns of mutation exhibit substantial variability, as shownin Figure 9. Spe
i�
ally, the 
losely related members of the Yersinia genus appear tohave unstable 
hromosome stru
ture (Deng et al., 2002), showing eviden
e for numerousrearrangements sin
e their divergen
e 1,500�20,000 years ago (A
htman et al., 1999).At the opposite extreme, estimates pla
e the spe
iation of E. 
oli and Salmonella at120�160 million years ago (O
hman and Wilson, 1987), but 
ross-spe
ies 
omparisonsshow little or no 
hange in genome organization among E. 
oli and Salmonella. Thus,rates of rearrangement in enteri
 ba
teria are lineage-spe
i�
 and 
an vary substantially.In addition to genome rearrangement, the genomes of enteri
 ba
teria also undergosubstantial gain and loss of geneti
 material, whi
h we 
olle
tively refer to as gene �ux.Within the spe
ies E. 
oli, pairwise 
omparisons of individual isolates indi
ate that ea
hisolate may 
ontain as mu
h as 20% novel gene 
ontent relative to the other (Pernaet al., 2001). The large amount of novel 
ontent in E. 
oli isolates implies that eitherthe 
enan
estor of E. 
oli had a relatively large genome whi
h has undergone lineage-spe
i�
 redu
tions, or that E. 
oli rapidly a
quires novel 
ontent from the environment.When designing a system for multiple genome alignment, the observed heterota
hyin rates of genomi
 rearrangement and gene �ux be
omes an important 
onsideration.An alignment s
oring s
heme that s
ales a rearrangement penalty based on nu
leotidedivergen
e among taxa would not a

urately 
apture the patterns observed in our data.We des
ribe a new genome alignment method that dire
tly addresses heterota
hy inthe rates of genomi
 rearrangement and gene �ux. The new method extends previousmethods for progressive genome alignment (Brudno et al., 2003a, Bray and Pa
hter,2003) by using an an
hor sele
tion s
heme that applies a breakpoint penalty to a
-
ount for rearrangement. The s
oring method adjusts the breakpoint penalty based
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Figure 9: Pairwise genome alignments of enteri
 ba
teria reveal the level of nu
leotideidentity in 
onserved segments, average fra
tion of the genome 
ontained in 
onservedsegments, and number of gene-order breakpoints among ea
h pair. Within the genusYersinia little nu
leotide-level divergen
e exists, but a substantial amount of genomi
rearrangement has o

urred (rightmost blue points). For easier visualization, the muta-tion spa
e has been split into three fo
used regions of nu
leotide identity whi
h 
ontainall pairwise 
omparisons.on pairwise estimates of breakpoint distan
e and genome 
onservation distan
e. Weapply a random-walk statisti
 to the resulting multiple genome alignments to distin-guish segments 
onserved among subsets of the taxa from segments 
onserved amongall taxa and from novel sequen
e. We implement the new alignment method in afreely available, open-sour
e software pa
kage 
alled Progressive Mauve, available fromhttp://gel.ahabs.wis
.edu/mauve5.2 MethodsThe Progressive Mauve alignment method 
onsists of �ve basi
 steps: (1) lo
al-multiplealignment of highly similar unique subsequen
es, (2) 
onstru
tion of breakpoint and 
on-servation distan
e matri
es and a 
onservation-based guide tree, (3) progressive an
horedalignment, (4) iterative re�nement within 
ollinear segments, and (5) identi�
ation of



56segments 
onserved among two or more genomes using random-walk statisti
s and tran-sitive homology relationships. We des
ribe ea
h of these steps in turn below.Notation and assumptionsOur genome alignment algorithm takes as input a set of G genome sequen
es g1, g2, · · · ∈

G. We denote the length of genome i as |gi|. Our method 
omputes alignments along aguide tree Ψ, and we use n to denote an arbitrary node in Ψ. As Ψ is a rooted bifur
atingtree, an internal node n always has two 
hildren, whi
h we refer to as n.c1 and n.c2 orsimply c1 and c2 when n is implied by 
ontext. Furthermore, we de�ne the set of leafnodes at or below n as Leaf(n) and similarly, the leaf nodes at or below the 
hildren of
n as Leaf(c1) and Leaf(c2). The two sets of leaf nodes on c1 and c2 are disjoint, andea
h leaf node represents a genome from the set of input genomes G. Finally, we usethe fun
tion Des(n) to refer to all des
endant nodes at or below n.Various default parameter settings in our software implementation depend on theaverage length of input genome sequen
es. We de�ne a fun
tion to 
ompute averagegenome length as:

AvgSize(G) =
∑

g∈G

|g|

G5.2.1 Lo
al multiple alignmentWe perform lo
al-multiple alignment using a variation of the te
hnique des
ribed inAppendix B. The new seed-and-extend string mat
hing method seeds lo
al multiplealignments in unique regions of sequen
e that mat
h in two or more genomes, just likethe previous method. If a seed mat
hes in three or more genomes but is unique inonly a subset of those genomes, the new method extends the seed among the subset in



57whi
h it is unique. The previous approa
h would have ignored su
h seed mat
hes. Wefurther improve the new method to use palindromi
 spa
ed seeds Darling et al. (2006),allowing for some degenera
y in the mat
hing regions. Thus, the resulting lo
al multiplealignments 
an no longer be 
onsidered multi-MUMs, as they may 
ontain mismat
hes(but no indels). By default, we use a seed with weight equal to log2(AvgSize(G)/1.5.For enteri
 genomes, the default seed weight is 15, with length 23. We refer to the initialset of lo
al multiple alignments generated in this step as Minitial.5.2.2 Pairwise distan
e matrix and guide tree 
onstru
tionWe 
onstru
t two distan
e matri
es, one whi
h estimates the breakpoint distan
e amongea
h pair of genomes, and a se
ond whi
h estimates the amount of non-homologoussequen
e among any pair of genomes (
onservation distan
e). We refer to the breakpointdistan
e matrix as B and the 
onservation distan
e matrix as C. Both areG×Gmatri
eswith values in the range [0, 1]. We 
ompute the 
onservation distan
e in the same manneras previously reported Darling et al. (2004a). Brie�y, the 
onservation distan
e for a pairof genomes is the average fra
tion of ea
h genome 
overed by pairwise lo
al alignments,subtra
ted from one to form a distan
e. The pre
omputed lo
al multiple alignments areproje
ted to pairwise alignments for the purpose of 
omputing 
onservation distan
e.The breakpoint distan
e between a pair of genomes Gi, Gj is simply the numberof breakpoints in homologous gene order between that pair of genomes. Sin
e we donot know a priori whi
h segments of Gi and Gj are homologous we must estimate thebreakpoint distan
e through genome alignment. Without already knowing the relativeamounts of nu
leotide divergen
e, gene �ux, and genomi
 rearrangement among Gi and
Gj, it is di�
ult to pi
k a single breakpoint penalty for greedy breakpoint elimination
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Figure 10: The 
hange in the number of LCBs as minimum s
oring LCB are su

essivelyremoved. Pairwise 
omparisons of E. 
oli K12 MG1655 with several other enteroba
teriaare shown. A pronoun
ed downward shift in the number of LCBs o

urs as the minimums
ore surpasses 2000. For this data set we use a minimum LCB s
ore of 100,000 to providea 
onservative estimate of breakpoint distan
e.(des
ribed in Chapter 4) that provides pre
ise estimates of the breakpoint distan
e forany Gi and Gj. We use the an
hor s
oring metri
s des
ribed below to 
ompute LCBan
hor s
ores on pairwise mat
hes among ea
h pair of Gi and Gj. However, we observethat small, usually spurious, mat
hes 
onstitute the large number of low-s
oring LCBspresent in most pairwise 
omparisons, whereas most of the genome (and mat
hes) usuallyreside in a small number of high s
oring LCBs.Figure 10 illustrates the number of LCBs as a fun
tion of the minimum LCB s
oreremaining during appli
ation of greedy breakpoint elimination to enteri
 genome se-quen
es. Manual validation of genome alignments indi
ates that only 
orre
t pairwiseLCBs remain at minimum LCB s
ores ranging between 30,000-50,000. Furthermore,it appears that a 
onservative s
oring threshold of 100,000 still 
aptures the relativenumber breakpoints among pairwise 
omparison. Sin
e we use estimated breakpointdistan
es as s
aling fa
tors for subsequent alignment s
oring, we do not need to know



59the absolute breakpoint distan
e; a relative estimate of rearrangement rate su�
es.The software implementation of our method takes the default minimum LCB s
ore fordistan
e estimation to be: 4500 log2(
∑

g∈G

|g|
G

) whi
h equates to roughly 100,000 forgenomes averaging 5Mbp in size.The breakpoint distan
e is the total number of pairwise LCBs among Gi and Gj,minus 1, however Bi,j must be a value between 0 and 1. Referring to the estimatedbreakpoint distan
e between Gi and Gj as di,j, we arrive at values for B through thefollowing normalization:
MaxDist(G) = max(

AvgSize(G)

50000
, max
Ga,Gb∈G

da,b)

Bi,j =
di,j

2MaxDist(G)Here, AvgSize(G) 
omputes the average genome size, while MaxDist(G) 
omputesthe maximum breakpoint distan
e. Rather than stri
tly using the maximum observedbreakpoint distan
e, we estimate a "high" rate of rearrangement to be 20 breakpointsper megabase of sequen
e and use the maximum of the "high" estimate and the ob-served estimates as our normalizing distan
e. Without this adjustment, the values of
B would vary 
onsiderably when analyzing only stable genomes versus a 
ombinationof rearranged and stable genomes. Finally, we multiply MaxDist(G) by two to ensurethat distan
es never ex
eed 0.5, a value whi
h provides substantial s
aling of the s
oringfun
tions des
ribed below.We 
ompute the topology and bran
h lengths of the guide tree Ψ using neighbor-joining (Saitou and Nei, 1987) on the pairwise 
onservation distan
e matrix. Our 
on-servation distan
e measure is not an additive distan
e, thus the guide tree may have



60negative bran
h lengths. In general, negative lengths are in
onsequential to the align-ment pro
edure.5.2.3 Obje
tive s
oresLike many sequen
e alignment methods, Progressive Mauve seeks to optimize a well-de�ned obje
tive s
ore whi
h has been designed to assign higher values to better align-ments. For performing gapped alignments of 
ollinear segments, we apply the sum-of-pairs s
ore with a�ne gap penalties (Thompson et al., 1994, Feng and Doolittle, 1987).For sele
ting the 
ollinear 
hains of lo
al alignments that serve as genome alignmentan
hors we apply a di�erent obje
tive s
ore whi
h we refer to as the the sum-of-pairsan
horing s
ore. We also des
ribe a variation on the sum-of-pairs an
horing s
ore whi
h
an a

ount for the genome arrangement inferred at internal nodes of the guide tree.Lo
al alignment s
oringDuring the 
ourse of genome alignment, our method attempts to dis
riminate betweenlo
al alignments that suggest orthology (or xenology) and alignments of regions withrandom similarity or paralogy. Lo
al alignments believed to be in orthologous (or xenol-ogous) regions ultimately be
ome an
hors for the whole-genome alignment. We s
orelo
al alignments using an an
hor s
oring s
heme designed to assign high s
ores to well-
onserved regions that are unique in ea
h genome.Prior to beginning genome alignment, we 
ompute a uniqueness value for ea
h po-sition of every input genome. For a given position in Gi, the uniqueness is 
al
ulatedas 1 over the number of genome-wide mat
hes to the spa
ed seed pattern at that site.The uniqueness of ea
h site always ranges between 1 and 0, with highly repetitive sites



61having uniqueness values 
lose to 0. We refer to the uniqueness value of site x in Gi as
Ui,x.For a pairwise lo
al alignmentM among genomes Gi and Gj, we 
ompute the averageuniqueness of M using only sites in Gi and Gj that are aligned to ea
h other in M .Skipping unaligned sites prevents large internal gaps from in�uen
ing the uniqueness of
M . De�ne an aligned 
olumn ofM as a tuple col = 〈a, b〉 
ontaining the aligned sequen
e
oordinates in Gi and Gj, and refer to 
oordinates as col.a and col.b, respe
tively. If wede�ne the set of all aligned 
olumns inM as cols(M), then the average uniqueness s
oreof M 
an be written as

Uniqueness(M) =
∑

col∈cols(M)

Ui,col.a + Uj,col.b

2|cols(M)|We s
ore the quality of a given pairwise lo
al alignment M using the HOXD nu-
leotide substitution matrix (Chiaromonte et al., 2002). The HOXD matrix has beendemonstrated to provide good dis
rimination between homologous and non-homologoussequen
e in a variety of organisms, even at high levels of sequen
e divergen
e. We usepreviously derived a�ne gap penalties, -400 for a gap open and -35 for a gap exten-sion (S
hwartz et al., 2003). We refer to the pairwise a�ne gap and substitution s
oreas PairScore(M).The total an
hor s
ore of M is 
omputed as
AnchorScore(M) = PairScore(M) · Uniqueness(M).LCB s
oringAlthough in general an LCB may refer to a 
ollinear segment of two or more genomes,the LCBs 
onsidered during our progressive alignment pro
edure are always pairwise.



62We 
al
ulate the an
hor s
ore of an LCB as the sum of its 
onstituent pairwise lo
alalignment s
ores:
LcbAnchorScore(L) =

∑

M∈L

AnchorScore(M)The weighted breakpoint penaltyAs genomes diverge they may undergo genomi
 rearrangement. As a result, we mustidentify alignment an
hors that o

ur in a di�erent order and orientation in ea
h genome.To 
ompli
ate matters, spurious mat
hes and mat
hes among paralogs also frequentlyo

ur in a di�erent order and orientation in ea
h genome. To ensure a

urate alignmentan
horing we would like to �lter out any lo
al alignments that arise due to paralogoussegmental homology, in addition to any low-s
oring spurious mat
hes.When 
omputing LCB stru
ture among a pair of extant genomes, we apply a break-point penalty designed to a

ount for the expe
ted amount of genomi
 rearrangementand gene �ux that has o

urred sin
e their divergen
e. We de�ne a matrix of breakpointpenalties among ea
h pair of genomes as
Wi,j = wBi,jCi,jwhere w is a user-de�ned minimum LCB s
ore. Empiri
al eviden
e indi
ates that avalue of 30,000 gives high-quality estimates of LCB stru
ture for our target data set (seeFigure 10, full data not shown). The software implementation sets w = 1500AvgSize(G)by default, the value of whi
h is approximately 30,000 for our enteri
 genomes.



63The sum-of-pairs an
horing s
oreGiven a node n and set of pairwise LCBs among ea
h 
ross-pair of the genomes at orbelow nodes n.c1 and n.c2, we 
ompute the sum-of-pairs an
horing s
ore as
SPAnchorScore(n,L) =

∑

Gi∈Leaf(c1)

∑

Gj∈Leaf(c2)

(|Li,j| − 1)Wi,j

∑

l∈Li,j

LcbAnchorScore(l)The sum-of-pairs + an
estral an
horing s
oreA se
ond, optional LCB s
oring s
heme used by our method is the SP extant+an
estrals
ore. This s
oring s
heme has been designed to also s
ore pairwise LCB stru
turebetween extant genomes and the sequen
e arrangement inferred at internal nodes of thealignment tree.When 
omputing LCB stru
ture for a node n in the alignment tree we apply aweighted breakpoint penalty An whi
h is an average penalty among 
ross-pairs of de-s
endant genomes. Spe
i�
ally, the values of A for ea
h internal node n are de�nedas
An =

∑

Gi∈Leaf(c1)

∑

Gj∈Leaf(c2)

Wi,j

|Leaf(c1)||Leaf(c2)|When n has only two leaf-node des
endants, representing genomes Gi and Gj, An isidenti
al to Wi,j. To arrive at the SP extant+an
estral an
hor s
ore, we then modifythe original SP an
horing s
ore to in
lude s
ore terms for internal nodes below n:
SPAncestralAnchorScore(n) =

∑

Gi∈Des(c1)

∑

Gj∈Des(c2)

(|Li,j|−1)Ai,j

∑

l∈Li,j

LcbAnchorScore(l)
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a b c d

e f g hFigure 11: Treatment of regions without alignment an
hors. Pairwise alignments amongthe two 
hildren nodes of an internal node are shown in dotplot format. Panels a-d demonstrate pro
essing of a large gap inside a single LCB. Panels e-h demonstratepro
essing gaps between LCBs.5.2.4 Progressive an
hored multiple genome alignmentStaring with the guide tree Ψ, a set of lo
al-multiple alignments Minitial, and a weightedbreakpoint penalty matrix W, the following algorithm 
omputes a multiple genomealignment among sequen
es in G:1. Sele
t the 
losest pair of unaligned nodes that have the same parent in Ψ. Werefer to the unaligned nodes as c1, c2 and their parent as n.2. Extra
t all pre
omputed pairwise mat
hes between 
ross-pairs of genomes in Leaf(c1)and Leaf(c2) from Minitial. Lo
al multiple alignments may be proje
ted to pair-wise alignments.3. Translate pairwise mat
hes among extant genomes into 
oordinates of c1 and c2,
all the resulting set of pairwise mat
hes Mn. When c is a leaf node, the translation



65is trivial and mat
h 
oordinates remain un
hanged.4. Eliminate overlaps and resolve in
onsistent alignments among mat
hes in Mn asdes
ribed in Darling et al. (2004a).5. Translate mat
hes in Mn ba
k down the tree to 
onstru
t a set of lo
al-multiplealignments among Des(n), whi
h we refer to as Mt. For every pairwise mat
h in
Mn a 
orresponding lo
al-multiple alignment among Des(n) exists in Mt.6. For ea
h 
ross-pair of genomes Gi, Gj in Leaf(c1) and Leaf(c2), proje
t the lo
al-multiple alignments in Mt to their pairwise 
oordinates. Refer to the resulting setof proje
ted mat
hes as Mi,j. Ea
h proje
ted mat
h retains a pointer to theoriginal an
estral mat
h in Mn from whi
h it 
ame.7. Partition ea
h set of pairwise proje
ted mat
hes Mi,j into a set of pairwise Lo
allyCollinear Blo
ks Li,j8. Compute the 
urrent SP an
hor s
ore for n as SPAnchorScore(n,L)9. Perform sum-of-pairs greedy breakpoint elimination:9.1. Remove the pairwise LCB that results in the largest improvement in
SPAnchorScore(n,L). When removing the LCB, remove all pairwise proje
tedmat
hes in the LCB, and remove the 
orresponding mat
hes in Mn and any otherasso
iated proje
tions in Mi,j.9.2. Removing the LCB may allow neighboring LCBs to 
oales
e. Re
omputes
ores for all neighboring LCBs.9.3. Compute the new SP an
horing s
ore SPAnchorScore(n,L). If the news
ore is larger than the previous s
ore, return to step 9.1, otherwise 
ontinue tostep 10.



6610. Pi
k arbitrary endpoints for LCBs in the breakpoint regions between LCBs (Fig-ure 11 panel e).11. Che
k whether the �nal SP an
horing s
ore has improved. If not, go to step 14.12. Re
ursive an
hor sear
h. Sear
h for additional an
hors in large gaps betweenexisting an
hors and outside LCBs. Figure 11, panels a, b, and e, f illustrate there
ursive an
hor sear
h inside and outside LCBs, respe
tively.13. Return to step 3. Use any mat
hes identi�ed by the re
ursive an
hor sear
h, inaddition to the mat
hes that remained after greedy breakpoint elimination as inputto Step 3.14. Pi
k an arbitrary gap path in unan
hored regions (Figure 11 panels 
 and g).15. Perform an an
hored pro�le-pro�le alignment using MUSCLE (Edgar, 2004) TheMUSCLE sour
e 
ode was modi�ed to support an
hored pro�le-pro�le alignment.To limit 
ompute time, we enfor
e a maximum distan
e between an
hors of 20,000nt.When we en
ounter a gap larger than 20,000nt between an
hors, we add an an
horpoint on the gap-path midway between the nearest existing an
hor points.16. If nodes remain to be aligned then return to Step 1, otherwise end progressivealignment.An example of sum-of-pairs greedy breakpoint eliminationIterative re�nementWe subje
t ea
h aligned lo
ally 
ollinear blo
k to an iterative re�nement pro
ess us-ing the MUSCLE sequen
e alignment tool. To redu
e overall exe
ution time, we usewindow-based iterative re�nement to restri
t the total sear
h spa
e. In window-based
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Initial local-multiple alignments among extant genomes 1,2,3, and 4.

A) Visualized with respect to each genome sequence

B) Visualized as a directed multigraph with a path representing the order in each genome
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Figure 12: Panel A: An initial set of lo
al multiple alignments has been 
al
ulatedamong four genomes, labeled 1�4. The 
hosen alignment guide tree is shown at left.Ea
h genome sequen
e is laid out horizontally and segments 
ontained in lo
al-multiplealignments are depi
ted as blo
ks linked between genomes. Blo
ks below a genome's
enter line mat
h the reverse 
omplement strand in that genome. For simpli
ity weassume that pairwise alignment s
ores are equal for all pairs of genomes and assumethe s
ores given above. Panel B: The lo
al multiple alignments in A indu
e a dire
tedmultigraph where ea
h lo
al multiple alignment is a node and edges 
onne
t alignmentsthat are adja
ent in ea
h genome. A path from sour
e to sink vertex exists for ea
hof genomes 1�4, with edges labeled a

ordingly. Traversal of a given genome's pathvisits nodes in the order of the 
orresponding lo
al-multiple alignments in that genome.Negative edge labels indi
ate a swit
h in the strand mat
hed by adja
ent alignments.
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Figure 13: Panel A: The full graph shown in Figure 12 is proje
ted to the subgraph
ontaining only edges labeled 1 and 2. We perform greedy breakpoint elimination onthis pairwise proje
tion. Panel B: Pairwise LCBs among genomes 1 and 2 are identi�edas nodes 
onne
ted by �simple� paths, i.e. paths with edge labels 1,2, or singleton nodeswhi
h have edges labeled with both 1 and 2 but are not part of any simple paths.A 
y
le exists in the subgraph among nodes C, D, E, and F, and 
orresponds to aputative genome rearrangement between genomes 1 and 2. The 
y
le partitions thelo
al multiple alignments into three LCBs: {AB}, {CD}, and {E} with s
ores 10,000,10,000, and 1,000, respe
tively. F does not 
ontribute to any LCB sin
e it doesn'tmat
h in both 1 and 2. Ea
h LCB s
ore is equal to the sum of its 
onstituent alignments
ores. Panel C: Pairwise an
horing of genomes 1 and 2. The an
horing s
ore penalizesthe initial an
hor 
on�guration for two breakpoints, worth 1,500 ea
h, for a total an
hors
ore of 10,000+10,000+1,000-2x1,500 = 18,000. We then 
onsider the e�e
t of removingea
h LCB on the an
horing s
ore. Removal of {AB} would eliminate a single breakpointand result in a total an
hor s
ore of 9,500 be
ause A and B no longer 
ontribute 5,000ea
h to the s
ore. Removal of {CD} would eliminate a single breakpoint, also giving atotal an
hor s
ore of 9,500. Removal of {E} would eliminate two breakpoints and givea total an
hor s
ore of 18,500. We remove {E} be
ause it improves the an
hor s
orefrom 18,000 to 18,500. We 
reate the 
onsensus alignment path shown in blue whi
h
orresponds to the an
estor of 1 and 2 in the guide tree. The removal of E 
orrespondsto splitting the node into separate nodes per-genome (labeled E1 and E2) in the blue
onsensus path.
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Pairwise alignment of genomes 3 and 4

Figure 14: Panel A: Pairwise an
horing of genomes 3 and 4. The full graph shownin Figure 12 is proje
ted to the subgraph 
ontaining only edges labeled 4 and 5. Theinversion of mat
hes G, H, and I in genome 4 indu
es three pairwise LCBs: {A}, {GHI},and {FBD}, s
oring 5,000, 3,000, and 11,000, respe
tively. Ea
h of the two breakpoints
ome with a penalty of 1,500, for a total an
horing s
ore of 16,000. Removing any ofthe three LCBs fails to in
rease the an
horing s
ore, so the an
hors remain identi
al tothe initial set of lo
al alignments between genomes 3 and 4.re�nement, the alignment is divided into non-overlapping windows, ea
h of whi
h isre�ned separately. Figure 11 panels d and h show window-based iterative re�nementfor a given alignment tree node n. Regions aligned with few gaps may be re�ned inwindows of 500 or 200 alignment 
olumns. When a region of the existing alignment isambiguous, 
ontaining many gaps, we sele
t a window size of 20,000 alignment 
olumns.The relatively large window size gives MUSCLE greater latitude in shifting gaps to iden-tify optimal the alignment. These window sizes were 
hosen empiri
ally to provide areasonable trade-o� between speed and a

ura
y (data not shown).Identi�
ation of segments 
onserved among two or more genomesThe MUSCLE global alignment program dutifully �nds the highest-s
oring alignmentbetween alignment an
hors, regardless of whether the intervening region 
ontains homol-ogous sequen
e. O

asionally non-homologous regions be
ome aligned as a side e�e
tof for
ed global alignment in regions between an
hors. In order to identify and remove
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Anchoring of genomes 1, 2, 3, and 4
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score=5,000

score=5,000score=5,000

score=1,000Figure 15: Panel A: The pairwise proje
tion of the graph in Figure 12 to genomes 1 and3 has no 
y
les or inverted segments, yielding a single LCB. The LCB has s
ore 15,000and sin
e no breakpoints exist, the pairwise an
horing s
ore for 1,3 is 15,000. Panel B:The pairwise proje
tion to genomes 1 and 4 also has a single LCB with s
ore 15,000.Panel C: The pairwise proje
tion to genomes 2 and 3 has a 
y
le among nodes B, E,and F. The 
y
le indu
es four pairwise LCBs: {A},{B},{D}, and {F} with s
ores 5,000,5,000, 5,000, and 1,000 respe
tively. The initial an
hor 
on�guration is penalized forthree breakpoints, giving a total pairwise an
hor s
ore of 11,500. Panel D: The pairwiseproje
tion to 2 and 4 also has a 
y
le indu
ing four LCBs. The pairwise an
horing s
orefor 2 and 4 is also 11,500.
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Figure 16: To arrive at a �nal an
horing for genomes 1, 2, 3, and 4, we apply sum-of-pairs greedy breakpoint elimination to the pairwise proje
tions shown in Figure 15.The proje
tions 1,3 and 1,4 have no breakpoints, and thus no breakpoint elimination
an be applied. Proje
tions 2,3 and 3,4 ea
h have four LCBs. We 
ompute the total SPan
horing s
ore as the sum of ea
h pairwise an
horing s
ore: 15,000 + 15,000 + 11,500 +11,500 = 53,000. We then evaluate whether removal of any pairwise LCB would improvethe total SP an
horing s
ore. We arbitrarily 
hoose to 
onsider LCBs from the 2,3 pro-je
tion �rst. Removing {A} would result in a redu
tion from four to three breakpoints,and a loss of the 5,000 points 
ontributed by {A} to the proje
tion of 2,3. Be
ause weimpose transitive homology, we must also remove {A} from the pairwise proje
tions 1,3and 1,4 and 2,4 if we remove it from 2,3. Thus the total SP an
horing s
ore with {A}removed be
omes 10,000+10,000+8,000+8,000=36,000. We do not remove {A} be
ausethe SP an
horing s
ore would de
rease. Removing {D} has the same e�e
t on the SPan
horing s
ore as removal of {A}. Next, we evaluate removal of the LCB {F}. Removalof {F} would eliminate the 
y
le in the proje
tion of 2,3, resulting in a single pairwiseLCB with s
ore 15,000. Again, if {F} is removed from 2,3 it must also be removedfrom all other pairwise proje
tions, namely 2,4 (but not 3,4). The total SP an
horings
ore after removing {F} would be 15,000+15,000+15,000+15,000=60,000. Finally, we
onsider removal of {B} from proje
tion 2,3. Removal of {B} also eliminates the 
y
le in2,3 and would give a total SP an
horing s
ore of 15,000+15,000+11,000+11,000=52,000.Be
ause proje
tions 2,3 and 2,4 have identi
al LCBs, we need not 
onsider the s
ore im-pa
t of removing LCBs from 2,4. At this point, we remove the LCB whi
h o�ers thelargest in
rease in the SP an
horing s
ore: {F}. After removal of {F}, the SP an
horings
ore 
an no longer be improved and we arrive at the �nal an
horing depi
ted above asa gold-
olored path. Noti
e that F does not form an an
hor among genomes 2,3 and 2,4,but it remains a valid pairwise an
hor among 3,4 and is in
luded in the golden path.



72aligned, non-homologous regions we apply random-walk statisti
s to the HOXD substi-tution and a�ne gap s
ore (Chiaromonte et al., 2002, S
hwartz et al., 2003). Nu
leotidesubstitution s
oring matri
es are log-ratio estimates of the probability that a pair ofnu
leotides are homologous, versus the probability they are non-homologous. The sub-stitution and a�ne gap s
ore are designed to assign high s
ores to homologous regionsand low s
ores to non-homologous regions. Random walk statisti
s require a s
ore fun
-tion that will be negative on average, however, aligned LCBs typi
ally 
ontain highsequen
e identity, so the substitution s
ore is a very large positive number on average.Thus, we invert the log ratios and multiply the a�ne gap penalties by −1, whi
h 
auseshomologous LCBs to have a negative s
ore on average. We 
an then apply random walkstatisti
s to identify high-s
oring segments indi
ative of a non-homologous region.We performed simulation studies to sele
t an appropriate signi�
an
e threshold forrandom-walk ex
ursions. Spe
i�
ally, we simulated mole
ular evolution among a pairof sequen
es under the HKY85 model with 0.75 substitutions per site, Ts/Tv ratio=4,gamma-distributed rate heterogeneity (shape=1), and 0.05 indels per site with lengthssampled from a Poisson with intensity 3. These parameters were sele
ted to be ator beyond the outer limits of sequen
e alignable by our method. We performed 200simulations of sequen
es with average length 1,000,000 nt. S
oring the simulations yields42,429,635 ex
ursions whi
h indi
ate a 99.9% threshold s
ore of 2727 in the extreme valuedistribution, and a 99.99% threshold of 4076.We identify boundaries of non-homologous sequen
e as regions where the s
ore of arandom-walk ex
ursion ex
eeds our s
ore threshold. Given the boundaries of pairwisesegments likely to be non-homologous, we 
ompute the 
omplementary boundaries ofpairwise segments likely to be homologous. We then apply the notion of transitive



73homology (Szklar
zyk and Heringa, 2004, 2006) by �nding the union of all overlappingpairwise homologous segments. We refer to the resulting segments as "ba
kbone." Theregions 
omplementary to the "ba
kbone" are genome-spe
i�
 "islands" of sequen
e
ontent. We unalign any aligned regions that lie outside a ba
kbone segment.5.3 ResultsThe Progressive Mauve alignment algorithm results in a multiple genome alignmentwhere any nu
leotide is aligned to at most one other nu
leotide. After �ltration ofnon-homologous segments, the remaining aligned regions are typi
ally either mono-topoorthologous (Dewey and Pa
hter, 2006) or xenologous (Fit
h, 2000), and rarelyparalogous or non-homologous. In addition to predi
tions of homologous nu
leotides,Progressive Mauve predi
ts the endpoints of segmental homology among ea
h pair ofgenomes. Finally, the algorithm also predi
ts the boundaries of genome-spe
i�
 se-quen
e and sequen
e 
onserved in two or more of the genomes under study, whi
h werefer to as ba
kbone sequen
e.5.3.1 An alignment of enteroba
teriaWe apply the progressive genome alignment method to two groups of enteri
 ba
teria:a set of 12 E. 
oli and Shigella genomes (des
ribed presently), and a set of 9 genomesof Enteroba
teria
ae (des
ribed in Chapter 8. The alignment of 12 E. 
oli genomes
onsumes approximately 12 hours of 
omputation and 6GBmemory on an AMD Opteronworkstation. A visualization of the resulting alignment is shown in Figure 17. The �nalalignment 
onsists of 355 LCBs of minimum length 28, whi
h 
onstitute a total of 12.0
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Figure 17: An alignment of 12 E. 
oli genomes reveals 355 well-supported lo
ally
ollinear blo
ks and substantial amounts of lineage-spe
i�
 sequen
e. Ea
h genomeis laid out on a horizontal tra
k. Colored blo
ks indi
ate segmental homology, withlines 
onne
ting orthologous LCBs a
ross genomes. Blo
ks shifted below a genome's
enter axis are in the reverse 
omplement orientation relative to the referen
e genome.Crossing LCB-
onne
ting lines indi
ate that a rearrangement has taken pla
e. The 
ir-
ular genome of E. 
oli E24377A, shown at bottom, appears to have been linearizedat a di�erent point than the other genomes, resulting in a large number of 
rossingLCB-
onne
ting lines.



75Mbp of unique sequen
e. The E. 
oli appear to have undergone substantial amountsof gene �ux, and some isolates, parti
ularly Shigella isolates, appear to be undergoingrapid genome rearrangement.5.3.2 Intera
tive visualizationWe have developed an intera
tive visualization tool to assist exploration and interpreta-tion of the alignments generated by our method. The Mauve visualization environmentenables inspe
tion of multiple genome alignments at all s
ales, from a global display of
omparative genome ar
hite
ture to detailed inspe
tion of nu
leotide substitution. Asshown in Figure 18, ea
h aligned genome is displayed on a horizontal tra
k 
omposedof a sequen
e similarity plot and annotated sequen
e features. The viewer reads anddisplays annotated sequen
e features from GenBank format �at �les using the BioJavalibrary. The sequen
e similarity plot shows segmental homology as round re
tangles(blo
ks), with an average sequen
e identity plot inside the rounded re
tangle.The height of the sequen
e identity plot re�e
ts the average 
olumn entropy forthe region of the alignment 
overed by a 
olumn of display pixels. Spe
i�
ally, thesimilarity plot height is dire
tly proportional to a similarity value s(A, g, i) whi
h wede�ne as follows. Consider the alignment A as a G×C matrix, where ea
h of the G rows
orresponds to a genome and there are C 
olumns. Ea
h matrix entry is an elementin the alphabet {A,C,G, T,−}. To 
al
ulate the similarity for a given genome g ∈ G,we proje
t A to the submatrix A : g, whi
h is the submatrix formed by removing all
olumns where the entry for genome g is a gap (−). The similarity value for position iof g 
an then be 
al
ulated as:
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Es cher ic hia coli UTI89 UTI89

3010000 3012000 3014000 3016000 3018000 3020000 3022000 3024000 3026000 3028000 3030000 3032000 3034000 3036000 3038000 3040000 3042000 3044000 3046000 3048000 3050000 3052000

Es cher ic hia coli CFT073

0000 3132000 3134000 3136000 3138000 3140000 3142000 3144000 3146000 3148000 3150000 3152000 3154000 3156000 3158000 3160000 3162000 3164000 3166000 3168000 3170000 3172000

S higella dys enter iae S d197

0000 2702000 2704000 2706000 2708000 2710000 2712000 2714000 2716000 2718000 2720000 2722000 2724000 2726000 2728000 2730000 2732000 2734000 2736000 2738000 2740000 2742000

Es cher ic hia coli EDL933

0 3636000 3638000 3640000 3642000 3644000 3646000 3648000 3650000 3652000 3654000 3656000 3658000 3660000 3662000 3664000 3666000 3668000 3670000 3672000 3674000 3676000 367800

Es cher ic hia coli R IMD 0509952

3568000 3570000 3572000 3574000 3576000 3578000 3580000 3582000 3584000 3586000 3588000 3590000 3592000 3594000 3596000 3598000 3600000 3602000 3604000 3606000 3608000 3610000

S higella boydii S b227

000 2768000 2770000 2772000 2774000 2776000 2778000 2780000 2782000 2784000 2786000 2788000 2790000 2792000 2794000 2796000 2798000 2800000 2802000 2804000 2806000 2808000 28100

Es cher ic hia coli E24377A

0 810000 812000 814000 816000 818000 820000 822000 824000 826000 828000 830000 832000 834000 836000 838000 840000 842000 844000 846000 848000 850000 852000

S higella s onnei S s 046

00 3012000 3014000 3016000 3018000 3020000 3022000 3024000 3026000 3028000 3030000 3032000 3034000 3036000 3038000 3040000 3042000 3044000 3046000 3048000 3050000 3052000 305400

S higella  exner i 301

2820000 2822000 2824000 2826000 2828000 2830000 2832000 2834000 2836000 2838000 2840000 2842000 2844000 2846000 2848000 2850000 2852000 2854000 2856000 2858000 2860000 2862000

S higella  exner i 2457T

14000 2816000 2818000 2820000 2822000 2824000 2826000 2828000 2830000 2832000 2834000 2836000 2838000 2840000 2842000 2844000 2846000 2848000 2850000 2852000 2854000 2856000

Es cher ic hia coli HS

000 2866000 2868000 2870000 2872000 2874000 2876000 2878000 2880000 2882000 2884000 2886000 2888000 2890000 2892000 2894000 2896000 2898000 2900000 2902000 2904000 2906000 29080

Es cher ic hia coli K-12 MG1655 .

2846000 2848000 2850000 2852000 2854000 2856000 2858000 2860000 2862000 2864000 2866000 2868000 2870000 2872000 2874000 2876000 2878000 2880000 2882000 2884000 2886000 2888000

rpoSmutS

rpoSmutS

rpoS (not annotated)mutS

rpoSmutS

rpoSmutS

rpoSmutS

rpoS mutS

rpoSmutS

rpoSmutS

rpoSmutS

rpoSmutS

rpoSmutSFigure 18: A detailed view of the hypervariable region between the genes mutS and rpoSin E. 
oli K12. In the region between mutS and rpoS, several ea
h taxa have a
quiredan alternative set of non-homologous genes. We refer to su
h non-homologous genessurrounded by 
onserved orthologous genes as alternalogs. A bla
k re
tangle outlinesthe region 
ontaining alternalogs in the �gure, and 
olors on the similarity plot indi
atethe taxon groupings of segments that are 
onserved among two or more genomes. Mostimportantly, mauve-
olored segments are 
onserved among all taxa. The blue segmentsare 
onserved among K12, HS, CFT073, UTI89, and E24377A. Goldenrod segments arespe
i�
 to the uropathogeni
 CFT073 and UTI89 isolates. Bright yellow segments are
onserved between EDL933 and RIMD, and alternatively S. sonnei and S. boydii. Lightgreen segments are 
onserved among the two S. �exneri, while medium green segmentsare 
onserved between S. �exneri, S. dysenteriae, EDL933, and RIMD. The observedpattern of segmental homology appears to result from a 
ombination of intraspe
i�
re
ombination and di�erential gene loss.
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s(A, g, i) = 1−

i+ω/2
∑

j=i−(ω/2)

H(A : g, j)

ω

H(A, g, j) = −
∑

a∈{A,C,G,T}

count(a,A, g, j)

|G|
log2

count(a,A, g, j)

|G|

−
count(′−′,A, g, j)

|G|
log2

1

|G|

count(a,A, g, j) =
∑

k=1...|G|

1(A:g)k,j=awhere ω is a 
onstant sliding window size, defaulting to 5nt. The fun
tion count(a,A, g, j)
ounts the number of times 
hara
ter a o

urs in 
olumn j of A : g. The fun
tion
H(A, g, j) e�e
tively 
omputes the Shannon entropy of alignment 
olumn j in the sub-matrix A : g, with slight modi�
ation to 
onsider ea
h gap ′−′ as a di�erent 
hara
ter.This modi�
ation 
auses a 
olumn of all gaps or nearly all gaps to have high entropy,implying poor sequen
e 
onservation. Without the modi�
ation, heavily gapped align-ment 
olumns would appear to be well 
onserved. When information about the lo
ationof 
onserved �ba
kbone� segments is available, we further modify the equations above to
ompute similarity only on the subset of genomes in whi
h the segment is 
onsidered tobe 
onserved. Finally, when a single display pixel 
overs a range of sequen
e 
oordinates
x . . . y, we display the average similarity plot height for that pixel, 
omputed as:

y
∑

i=x

sim(A, g, i)

y − xIt is worth noting that ω may be set to 0 so that the display of average similaritydoes not use sliding windows to smooth the similarity peaks. Numerous problems existwith analyses based on sliding window methods, although for the type of exploratorydata analysis presented by the Mauve viewer, use of a sliding window should not pose a



78problem.5.4 Dis
ussionMultiple alignments of genomes with rearrangement and lineage-spe
i�
 sequen
e mayprovide eviden
e for an
estral rearrangement events that are undete
table with pairwise
omparisons of extant sequen
es. The simplest s
enario for whi
h an an
estral rear-rangement 
an be dete
ted in a multiple alignment, but not among pairwise alignmentsis shown for three genomes in Figure 19.The alignments produ
ed by our method serve as a foundation for further study intoall aspe
ts of genome evolution. Both deterministi
 (Bourque and Pevzner, 2002, Tangand Moret, 2003) and Bayesian (Miklos, 2003, Larget et al., 2002) methods for infer-en
e of genome rearrangement histories may dire
tly use the LCB predi
tions as input.A 
hallenge exists, however, be
ause su
h methods typi
ally assume that orthologoussegments are present in all genomes under study. Alignments produ
ed by ProgressiveMauve frequently 
ontain segments 
onserved in only a subset of the organisms un-der study, presumably due to di�erential gene loss or a
quisition via lateral transfer.Bayesian methods for inferen
e of gene 
ontent evolution via loss and lateral transferhave re
ently been proposed (Csuros and Miklos, 2006), but work remains to integratesu
h models with a model of genome rearrangement.In addition to supporting studies of genomi
 rearrangement, our multiple genomealignments enable genome-wide study of re
ombination patterns and sele
tive for
es.
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Figure 19: Some genome rearrangement events may be undete
table using pairwise 
om-parisons, but revealed through multiple genome 
omparison. The 
ommon an
estor (A)of extant genomes C, D, and E has �ve genes, numbered 1 through 5. A transpositiono

urs on the bran
h from A to C, but the transposition is not observable in pairwise
omparisons between C, D, and E due to di�erential gene loss. A simultaneous 
ompar-ison of C, D, and E reveals the rearrangement as a 
y
le in the alignment graph.Several studies of re
ombination and sele
tion among mi
robial genomes have been pub-lished to date, however the majority have fo
used only on geni
 regions, ignoring impor-tant non-
oding sequen
e (Chen et al., 2006).A
knowledgmentsProgressive Mauve was 
on
eived on a 
ou
h in Bar
elona.



80Chapter 6
Evaluating alignment a

ura
y
Without a `
orre
t' alignment of the enteri
 genomes, the alignments 
al
ulated bythe previously des
ribed methods 
an not be evaluated for a

ura
y. Although severalben
hmark data sets exist for protein sequen
e alignment (Thompson et al., 1999, Edgar,2004), no su
h ben
hmark data sets exist for the genome alignment task. Constru
tionof an alignment a

ura
y ben
hmark would require manual 
uration of a whole-genomemultiple alignment that in
ludes rearrangement and lateral gene transfer, a task that todate has proven too time-
onsuming and di�
ult. Despite the la
k of a manually 
urated
orre
t alignment, we 
an estimate the alignment a

ura
y by modeling evolution andaligning simulated data sets.The inferential power yielded by using simulated evolution to evaluate alignmenta

ura
y is only as strong as the degree to whi
h the simulation faithfully represents theevolutionary pro
esses that produ
e naturally o

urring genomes of interest. Keepingthat fa
t in mind, we 
onstru
ted a simplisti
 model of genome evolution that we believe
aptures the major types, patterns, and frequen
ies of events in the history of the enteri
genomes. Given a rooted phylogeneti
 tree and an an
estral sequen
e we would like togenerate evolved sequen
es for ea
h internal and leaf node of the tree, along with a mul-tiple sequen
e alignment of regions 
onserved throughout the simulated evolution. To



81e�e
tively represent genome evolution, the simulation must in
lude nu
leotide substitu-tions and indels in addition to genome s
ale events su
h as horizontal transfer, inversion,and rearrangement.Nu
leotide substitutions are ostensibly the best studied and most ubiquitous muta-tion pro
ess. We use the HKY85 (Hasegawa et al., 1985) model of nu
leotide substitu-tion implemented in the Monte-Carlo simulation pa
kage 
alled Seq-gen (Rambaut andGrassly, 1997). We apply a Transition/Transversion ratio of 4 and gamma-distributedrate heterogeneity with shape parameter α = 1. Small insertions and deletions (in-dels) are modeled as o

urring with uniform frequen
y and distribution throughout thegenomes, with a size sampled from a Poisson distribution with mean value 3bp. Whenstudying the di�eren
es between E. 
oli O157:H7 EDL933 and K-12 MG1655 (Pernaet al., 2001), it be
ame 
lear that a small number of horizontal transfers introdu
inglarge regions of sequen
e have o

urred, while the majority of transfers introdu
ed smallsequen
e regions. Our model in
ludes large horizontal transfer events uniformly dis-tributed in length between 10Kbp and 60Kbp. The size of small horizontal transferevents is sampled from a geometri
 distribution with mean value 200bp. Horizontaltransfer is implemented by simultaneously evolving a set of 'donor' genomes from whi
hhorizontally transferred sequen
e 
an be sampled.Using the observation that two overlapping inversion events 
an result in a translo-
ation, our model does not expli
itly implement translo
ation events. The length ofinversions are sampled from a geometri
 distribution with mean value 50Kbp. Lo
a-tions for inversion and horizontal transfer events are sampled uniformly throughout thegenome, and all events are simulated to have taken pla
e at a point in time given bya marked Poisson pro
ess over the phylogeneti
 tree. Finally, genome size is expe
ted



82to stay relatively 
onstant over time, so deletion events are sampled with the same sizeand frequen
y as events that introdu
e new sequen
e. Our implementation of the evo-lutionary model des
ribed above is referred to as the simple genome evolver, or justsgEvolver.6.1 Alignment s
oringWe s
ore the 
al
ulated alignments against the 
orre
t alignments generated during theevolution pro
ess. Previous studies of alignment a

ura
y have used a sum-of-pairs s
or-ing s
heme to 
hara
terize the nu
leotide level a

ura
y of the aligner (Thompson et al.,1999, Darling et al., 2004a). The experiments presented here use sum-of-pairs s
oring,but we also de�ne several new a

ura
y measures intended to quantify ea
h alignmentsystem's ability to dete
t segmental homology and predi
t breakpoints of genomi
 rear-rangement. We treat nu
leotide alignment a

ura
y more pre
isely by de�ning 
riteriafor True Positive, False Positive, and False Negative alignments, allowing us to 
hara
-terize both sensitivity (re
all) and positive predi
tive value (pre
ision) of ea
h method.A summary of the s
oring metri
s appears in Table 4 and full de�nitions follow.For nu
leotide-level alignment a

ura
y metri
s, we 
lassify ea
h pair of nu
leotidesaligned in a 
al
ulated alignment as either True Positive (TP), False Positive (FP), orFalse Negative (FN). A True Positive is a pair of nu
leotides aligned in the 
al
ulatedalignment that also appear in the 
orre
t alignment. A False Positive is a pair of nu-
leotides aligned in the 
al
ulated alignment that is not found in the 
orre
t alignment.A False Negative is a pair of nu
leotides aligned in the 
orre
t alignment whi
h were notaligned in the 
al
ulated alignment. We do not quantify True Negative (TN) alignments,



83Nu
leotide Sensitivity TP / (TP + FN) The fra
tion of 
orre
tly aligned nu
leotidepairs in the 
al
ulated alignment.The fra
tion of nu
leotide pairs 
orre
tly alignedNu
leotide PPV TP / (TP + FP) in the 
al
ulated alignment, out of the total nu
leo-tide pairs aligned in the 
al
ulated alignment.The fra
tion of LCBs in the 
orre
t alignmentLCB Sensitivity TP / (TP + FN) that had at least one 
orre
tly aligned pair ofnu
leotides in the 
al
ulated alignment.The fra
tion of LCBs in the 
al
ulated alignmentLCB PPV TP / (TP + FP) that had at least one 
orre
tly alignedpair of nu
leotides.The distan
e between the predi
ted breakpointBreakpoint lo
alization - of rearrangement and the true breakpointof rearrangement.Table 4: A summary of the s
oring metri
s used to evaluate a

ura
y of genome align-mentsas there are exponentially many TN possibilities.We also quantify the ability of ea
h aligner to 
orre
tly identify orthologous segmentalhomology in the form of Lo
ally Collinear Blo
ks (LCBs). For ea
h possible pair ofgenomes we measure whether the aligner �nds LCBs among that pair, yielding a sum-of-pairs LCB a

ura
y metri
. When an aligner 
orre
tly aligns at least one pair ofnu
leotides in an LCB, we 
onsider the LCB as 
orre
tly found in the 
orrespondingpair of genomes (True Positive). Pairwise LCBs in the 
orre
t alignment whi
h haveno 
orre
tly aligned pairs in the 
al
ulated alignments are 
onsidered not found (FalseNegative). Any pairwise LCB in the 
al
ulated alignment that 
ontains no 
orre
tlyaligned positions is 
onsidered to be a False Positive. As with the nu
leotide a

ura
ymetri
, there are exponentially many True Negative LCB predi
tions whi
h we do notreport.Finally, we quantify how well ea
h aligner lo
alizes the exa
t breakpoint of rear-rangement. When an LCB is 
orre
tly predi
ted in the 
al
ulated alignment, we re
ord



84the di�eren
e between the boundary 
oordinates of the 
orre
t LCB and those of the
al
ulated LCB. When the di�eren
e is negative, the 
al
ulated alignment has underpre-di
ted the boundary, i.e. the 
al
ulated LCB does not extend to 
over the full region ofhomology. A positive di�eren
e indi
ates an overpredi
tion, where the 
al
ulated LCBin
ludes additional sequen
e beyond the end of the segmental homology. We reportmean, standard deviation, and quantile statisti
s for LCB boundary predi
tions.6.2 ExperimentsUsing the simple genome evolver, we designed and exe
uted experiments to 
ompare theperforman
e of several genome alignment systems under a variety of mutational regimes.Multiple alignment experiments used a phylogeneti
 guide tree estimated for a group ofnine E. 
oli, Shigella, and Salmonella, midpoint rooted to provide an entry point for thean
estral sequen
e. Figure 20 shows the topology and bran
h lengths of the tree usedfor our simulation studies. Rather than generate a random an
estral sequen
e, we usedDNA randomly sampled from an enteri
 genome in order to preserve the distributionof sequen
e motifs and repetitive subsequen
es found in naturally o

urring genomes.Additional enteri
 DNA was sampled for use as a donor sequen
e pool for insertion andhorizontal transfer events. Both samplings are without repla
ement, i.e. the an
estraltarget sequen
e and the an
estral donor sequen
es are never identi
al to ea
h other.We pro
essed all evolution simulations and genome alignments using the Condorhigh throughput 
omputing environment at the University of Wis
onsin. The Wis
on-sin Condor 
luster 
ontains over 1000 
ompute nodes and allowed us to rapidly alignthousands of simulated data sets.
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Taxon0

Taxon1

Taxon2

Taxon3

Taxon4

Taxon5

Taxon6

Taxon7

Taxon8Figure 20: A phylogeneti
 tree relating the nine enteri
 genomes studied in Chapter 4.The tree was 
al
ulated using Neighbor-Joining on a genome-
ontent distan
e metri
.The unrooted tree has been midpoint-rooted for simulation studies.6.2.1 Experiment: genomes without rearrangementOur �rst experiment 
ompared the ability of the original Mauve, Multi-LAGAN version1.2, Mavid version 0.9, Mauve 1.3.0, and Progressive Mauve to align 
ollinear sequen
esthat had undergone in
reasing amounts of nu
leotide substitution and indels. This ex-periment is designed to test the sensitivity of the an
horing methods employed by ea
haligner. We simulated evolution of nine genomes at 20 in
reasing nu
leotide substi-tution rates and 20 in
reasing indel rates, performing 3 repli
ate experiments of ea
h
ombination of substitution rate and indel rate.Ea
h aligner's average sensitivity for ea
h simulation is displayed in Figure 21. Fromthe �gure, it is obvious that the original Mauve implemention's alignment s
ore dropspre
ipitously in the presen
e of an in
reasing substitution rate. The improved versionof Mauve whi
h uses approximate multi-MUM an
hors (versions 1.0 and later) performssubstantially better than the original Mauve, but still falls short of Mavid and Multi-LAGAN at high mutation rates. We attribute this behavior to Mauve's requirementthat the multi-MUM an
hors be present in all genomes under study. Multi-LAGAN'salignment an
hors 
an 
ontain substitutions and indels, and must only align pairs of
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Figure 21: The sensitivity of Mauve(1), Multi-LAGAN(2), Mavid(3), Mauve 1.3.0 withspa
ed seeds(4), and Progressive Mauve(5) when aligning sequen
es evolved with in-
reasing amounts of nu
leotide substitution and indels. The exa
t mat
h an
horingte
hnique employed by the original Mauve implementation limits its ability to align dis-tantly related sequen
es. The more re
ent Mauve 1.3.0 implementation uses approximatemulti-MUMs as alignment an
hors, and performs substantially better. Multi-LAGANversion 1.2 did not 
omplete the alignments of genomes without indels, resulting in thebla
k row at the bottom. The performan
e of Progressive Mauve is 
omparable to thatof Multi-LAGAN and Mavid 0.9, outperforming these methods for 
ertain 
ombinationsof indel and substitution rate. The thin blue line indi
ates the 
ombination of indeland substitution rates that were subsequently used for tests measuring aligner robust-ness to inversion (Figure 24). The asterisk(*) indi
ates the 
ombination of indel andsubstitution rates used for tests measuring aligner robustness to gene �ux (Figure 25).



87genomes, making them mu
h more sensitive. Mavid appears to perform better thanMulti-LAGAN at very high mutation rates, probably owing to its method of inferringan
estral states along a phylogeny and using those to 
ompute alignment an
hors. Pro-gressive Mauve uses a progressive alignment an
horing approa
h, allowing it to utilizean
hors present in as few as two genomes. The progressive approa
h provides a substan-tial boost in an
horing sensitivity and the performan
e of Progressive Mauve is similarto that of Mavid and Multi-LAGAN. For the nu
leotide substitution and indel ratespreviously reported in the enteri
 data set, Mauve aligns the simulated genomes with ahigh degree of sensitivity.We do not report LCB a

ura
y metri
s for this experiment be
ause the genomeswere evolved under a model that did not in
lude genomi
 rearrangement.6.2.2 Experiment: pairs of genomes with rearrangementWe pro
eeded to gauge the ability of the original Mauve implementation and Shu�e-LAGAN version 1.2 to align sequen
es that had undergone in
reasing amounts of in-version and nu
leotide substitution. Be
ause Shu�e-LAGAN is a pairwise aligner, weredu
ed the number of taxa in our simulation from 9 to two. Three simulations were per-formed for ea
h of 110 
ombinations of nu
leotide substitution rate and inversion rate.The average nu
leotide sensitivity of Mauve and Shu�e-LAGAN for ea
h experiment areshown in Figure 22. Spe
ial 
onsiderations must be taken when s
oring Shu�e-LAGAN.Be
ause Shu�e-LAGAN attempts to identify and align both orthologous and paralogousregions but does not distinguish orthology from paralogy, a single residue in the �rstgenome 
an be ambiguously aligned to multiple residues in the se
ond genome. Forthe purpose of s
oring Shu�e-LAGAN, we award points for 
orre
tly aligned nu
leotide



88
0

20

40

60

80

100

A
lig

n
m

e
n

t 
A

cc
u

ra
cy

 (
%

)

0 100 200 300 400 500

0
1

0
0

0
2

0
0

0
3

0
0

0

Nucleotide Substitutions (Thousands)

In
ve

rs
io

n
s

* *
0 100 200 300 400 500

0
1
0
0
0

2
0
0
0

3
0
0
0

Nucleotide Substitutions (Thousands)

In
ve

rs
io

n
s

Figure 22: The performan
e of Mauve(left) and Shu�e-LAGAN(right) when aligningtwo sequen
es evolved with in
reasing amounts of nu
leotide substitution and inversions.Mauve is 
learly more a

urate than Shu�e-LAGAN at lower substitution rates. Shu�e-LAGAN version 1.2 did not 
omplete some alignments without rearrangements, resultingin bla
k entries. The rate of substitution and inversion observed between E. 
oli andSalmonella is denoted by an asterisk(*).pairs if the pair appears in anywhere in the alignment, even if the positions have beenaligned to other, non-orthologous residues.The experiment shows that the original Mauve implementation 
learly ex
els at align-ing rearranged sequen
es under lower substitution rates that do not hamper its an
horingpro
ess. Interestingly, Shu�e-LAGAN appears to perform better as the substitution ratein
reases. Based on our experien
e, we 
onje
ture that this 
ounter-intuitive result is re-lated to the repetitive nature of the an
estral enteroba
terial sequen
e. Shu�e-LAGANappears to have di�
ulty sele
ting an
hors in repetitive sequen
es. As the nu
leotidesubstitution rate in
reases, regions that were repetitive are randomly mutated and thusno longer repetitive. An
horing its alignment in unique subsequen
es provides Mauvewith immunity to this phenomena.We do not report LCB s
oring metri
s for this experiment be
ause Shu�e-LAGANdoes not distinguish between orthologous and paralogous segmental homology.
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Figure 23: The performan
e of the original Mauve implementation when aligning se-quen
es evolved with rates similar to those observed among a group of E. 
oli andSalmonella genomes. In this experiment, the substitution, indel, and inversion frequen-
ies were held 
onstant while the rates of small and large gene �ux were modulated. Theasterisk denotes the 
ombination of large and small gene �ux rates observed expe
tedbetween E. 
oli and Salmonella. As the rate of large horizontal transfer in
reases theamount of lineage-spe
i�
 sequen
e relative to ba
kbone grows. Be
ause Mauve 
an notalign large lineage-spe
i�
 regions the alignment sensitivity s
ore drops. When s
oredonly on regions 
onsidered ba
kbone sequen
e the sensitivity is 
onsistently above 98%.6.2.3 Experiment: enteroba
teria-like genomesOur third set of experiments sought to evaluate the ability of Mauve to align genomessimilar to the enteroba
teria. Evolutionary rates for the simulation were extrapolatedfrom previously published observations of the di�eren
es between E. 
oli K-12 MG1655and O157:H7 EDL933 (Perna et al., 2001). For these two E. 
oli, there are about 75,000observed nu
leotide substitutions, about 4,000 observed indels, 40 large horizontal trans-fer events, 400 small horizontal transfers, and one inversion. The observed frequen
ieswere 
onverted to rates used to assign event frequen
ies to bran
hes of the phylogeneti
guide tree. It is known that among the group of enteroba
teria, the Salmonella havehigher rates of inversion and rearrangement than the E. 
oli. To 
ompensate, the inver-sion rate was adjusted to result in approximately 30�40 inversion events. When varyingthe substitution and indel rates between 0 and 125% of the observed rates while holding



90horizontal transfer and inversion rates 
onstant, Mauve alignments 
onsistently aver-age 80% sensitive, ± 5% (data not shown). The quality of alignment does not appearto drop as the substitution and indel rates are in
reased in this range. Rather, it ap-pears that horizontal transfer rates have a more signi�
ant impa
t on alignment quality.As horizontal transfer rates in
rease, the ratio of lineage-spe
i�
 sequen
e to ba
kbonesequen
e in
reases and Mauve's alignment algorithm aligns de
reasing amounts of thetotal sequen
e. When varying simulated horizontal tranfser rates between 100 and 200%of previously reported rates for the enteroba
teria, Mauve 
onsistently aligns with about65% sensitivity (Figure 23). When s
ored only against regions of the simulated genomes
onsidered as 
onserved ba
kbone, Mauve 
onsistently aligns with >98% sensitivity.For the purpose of s
oring the alignment, we de�ne ba
kbone as a region in the 
orre
talignment 
ontaining more than 50 gap-free 
olumns without stret
hes of 50 or more
onse
utive gaps in any single genome sequen
e. Based on our simulations we believethe original Mauve alignment method a

urately aligns regions 
onserved among allgenomes under study, however, signi�
ant lineage-spe
i�
 regions remain unaligned.6.2.4 Experiment: high rates of rearrangementWe assessed the relative performan
e of Mauve 1.3.0 and Progressive Mauve when align-ing genomes with high rates of genomi
 rearrangement and nu
leotide substitution. Weperformed three repli
ates of simulated evolution at 10 in
reasing substitution rates and10 inversion rates. In addition to quantifying sum-of-pairs nu
leotide sensitivity, we alsoquanti�ed positive predi
tive value and LCB a

ura
y on this data set. The results,shown in Figure 24, indi
ate that Progressive Mauve 
an a

urately align genomes withsubstantially higher rates of rearrangement than previous Mauve implementations.



916.2.5 Experiment: high gene �ux ratesSome ba
teria have been demonstrated to rapidly a
quire novel gene 
ontent from othermi
robes (Friedri
h et al., 2001, Hsiao et al., 2005), thus we would like to know how wellour alignment methods perform in the fa
e of substantial a
quisition and loss of geneti
material (gene �ux). We 
hara
terized the a

ura
y of Mauve 1.3.0 and ProgressiveMauve when aligning genomes simulated to undergo high rates of both small- and large-s
ale gene �ux, in addition to modest rates of substitution, indels, and rearrangement.We use an an
estral sequen
e of 500,000nt.The results, shown in Figures 25, indi
ate that the algorithm used by Mauve 1.3.0falters when fa
ed with large-s
ale gene �ux, while Progressive Mauve performs sig-ni�
antly better. Both Mauve and Progressive Mauve tolerate the small-s
ale gene�ux�modeled here as insertions and deletions of sequen
e with geometri
ally distributedaverage lengths of 200nt. As the rates of gene �ux in
rease, the probability that anygiven pair of genomes share orthologous sequen
e deteriorates and eventually rea
heszero in the limit of an in�nitely high rate of gene �ux.6.3 Simulated phylogeneti
 laddersA 
ommon experimental design in 
omparative genomi
s studies involves sequen
ingthe genomes of a group of organisms believed to have a phylogeneti
 relationship thatapproximates a so-
alled phylogeneti
 ladder (Clark et al., 2003, Thomas et al., 2003).Su
h experimental designs typi
ally aim to identify genomi
 regions that are 
onservedat in
reasing levels of sequen
e divergen
e. A bene�t of sequen
ing phylogeneti
 in-termediates in a ladder-type experiment is that multi-genome 
omparisons may allow



92nu
leotide homology to be identi�ed among pairs of organisms that are too divergentfor pairwise 
omparison.We attempt to gauge the ability of our alignment algorithm to exploit additionalinformation available by sequen
ing phylogeneti
 intermediates between two divergentorganisms. Beginning with two divergent taxa (a and q in Figure 26), we simulategenome evolution with rearrangement, horizontal transfer, nu
leotide substitution, andindels. The sensitivity of our method in aligning the pair of simulated genomes for avariety of bran
h lengths is given in Figure 27A. We then add a single taxon whi
hevenly splits the bran
h from the root to taxon a and evaluate the alignment sensitivity.We 
ontinue by repeatedly adding taxa at points whi
h evenly divide the previous taxainto a phylogeneti
 ladder with in
reasing resolution. The alignment sensitivity resultsfor ladders with 0, 1, 3, 7, and 15 taxa in addition to a and q are shown in Figure 27.Rather than evaluate alignment sensitivity among all taxa, we evaluate sensitivityonly among genomes a and q. The pairwise measurement allows us to inspe
t whetheradding intermediate rungs on the phylogeneti
 ladder allows our algorithm to 
limbhigher than otherwise possible. The results suggest that in general, Progressive Mauve
an produ
e substantially better alignments when given additional sequen
e informationfor intermediate taxa.6.4 Dis
ussionThe simulation studies reveal several important features of 
urrent genome alignmentalgorithms. In the absen
e of genomi
 rearrangement, aligners su
h as MAVID, Multi-LAGAN, and Progressive Mauve o�er 
omparable performan
e and are able to align



93extremely divergent genomes, up to .75 average substitutions per site in our study.When signi�
ant amounts of gene �ux or rearrangement have taken pla
e, the multiplegenome alignments 
omputed by Progressive Mauve o�er an unpre
edented level of a
-
ura
y. Progressive Mauve outperforms both Mauve and TBA for nu
leotide-level align-ment and outperforms Mauve for dete
tion of LCBs indi
ative of orthology or xenology.Progressive Mauve's ability to a

urately lo
alize the breakpoints of genomi
 rearrange-ment should permit automated study of sequen
e patterns (su
h as repeats or mobileelements) asso
iated with genomi
 rearrangement.6.5 A
knowledgmentsPortions of this 
hapter appeared as Darling, Mau, Blattner, and Perna (2004a).
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Figure 24: A

ura
y of Mauve 1.3.0 (�rst row), Progressive Mauve (se
ond row), andTBA (third row) when aligning genomes with in
reasing amounts of nu
leotide substi-tution and inversions. The inversion rate in
reases along the y-axis and the substitutionrate in
reases along the x-axis. Colors indi
ate a per
entage s
ale ranging from 0%(bla
k) to 100% (white). Progressive Mauve 
learly outperforms Mauve 1.3.0 and TBAover the entire spa
e of mutation rates. We do not report LCB a

ura
y for TBA be-
ause it does not identify monotoporthologous LCBs. The lower portion of the �gureillustrates the ability of Mauve and Progressive Mauve to lo
alize the breakpoints ofrearrangement. For 
orre
tly predi
ted LCBs, the absolute distan
e between the pre-di
ted breakpoint and true breakpoint is re
orded. Ea
h 
ell is a 
omposite of �vevalues, showing the min, �rst quartile, median, third quartile, and maximum error inbreakpoint lo
alization. The entirely white 
ells in the bp lo
alization results for Mauve1.3.0 o

ur when Mauve 1.3.0 makes no LCB predi
tions at all, thus a
hieving perfe
tpositive predi
tive value. The bla
k 
ells in Progressive Mauve indi
ate runs whi
h didnot 
omplete.
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ura
y of Mauve 1.3.0 (�rst row) and Progressive Mauve (se
ond row)when aligning genomes with in
reasing amounts of small-s
ale and large-s
ale gene �ux.The y-axis gives the average number of large gene �ux events between the most distanttaxa shown in Figure 20. The x-axis gives the average number of small gene �ux eventsbetween the most distant taxa. Colors indi
ate a per
entage s
ale ranging from 0%(bla
k) to 100% (white). The substitution rate and indel rate were �xed at the 
ombi-nation indi
ated by the asterisk in Figure 21. The inversion rate was set to a value whi
hresults in 42 average inversions among the most distant taxa. Progressive Mauve 
learlyoutperforms Mauve 1.3.0 and TBA over the entire spa
e of mutation rates, although allmethods tend to break down in the fa
e of substantial large-s
ale gene �ux. Again, wedo not report LCB a

ura
y for TBA be
ause it does not identify monotoporthologousLCBs.



96

a b c d e f g h i j k l m n o p q

Branches added in the following order:

1.6

1.4

1.2

1.0

0.8

0.6

1.5

1.3

1.1

0.9

0.7

0.5

0.4

0.3

0.2

0.1

Figure 26: Phylogeneti
 ladder used for alignment a

ura
y pro�ling. The initial treein
ludes the two thi
k solid bla
k bran
hes 
onne
ting nodes a and q. We then adddashed bla
k bran
hes, solid grey bran
hes, dashed grey bran
hes, and �nally thin bla
kbran
hes for the experiments in Figure 27 labeled B, C, D, and E, respe
tively. Thesequen
e of bran
h additions 
orresponds to starting with two divergent genomes, andrepeatedly sampling the genomes of phylogeneti
 intermediates. Thus, the �rst tree hastwo taxa, the se
ond has three, third has �ve, fourth has nine, and �fth has seventeen.
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Figure 27: A

ura
y of Progressive Mauve when aligning data simulated a

ording toa phylogeneti
 ladder. As the number of taxa sampled in
reases the quality of thealignment generally in
reases, indi
ating that the aligner e�e
tively exploits additionalsequen
e information. Alignment quality deteriorates at high mutation rates even whena large number of taxa are sampled until a and q be
ome unalignable at 1.48 averagesubstitutions per site. Substitutions were sampled a

ording the the HKY85 model witha Ts/Tv ratio of 4 and gamma-distributed rate heterogeneity with shape=1. Indels weresampled at a rate equal to 5% the rate of nu
leotide substitution, and no rearrangementor gene �ux was modeled. We performed �ve repli
ates of ea
h experiment, and theaverage pairwise sensitivity of alignments among sequen
es a and q was measured. Thedata set with the highest average sensitivity at ea
h mutation rate is labeled with a bluestar.



98Chapter 7
Dete
ting homologous re
ombinationin genome alignments
7.1 Introdu
tionThe role of lateral gene transfer (LGT) in shaping prokaryoti
 genomes has been the sub-je
t of intense investigation and debate in re
ent years (Milkman, 1997, Daubin et al.,2003, Feil et al., 1999, Spratt et al., 2001, Gogarten et al., 2002, Lawren
e and Hen-dri
kson, 2003, Lerat et al., 2003, O
hman et al., 2005, Ge et al., 2005, Beiko et al.,2005). In the pre-genomi
 era, the handful of examples of LGT were dete
ted pri-marily as dis
ordan
e between phylogeneti
 re
onstru
tions with di�erent housekeepinggenes (Dykhuizen and Green, 1991, Bowler et al., 1994, Suerbaum et al., 1998, Reid et al.,2000). The explosion of publi
ly available ba
terial genome sequen
es, 
oupled with thedevelopment of whole-genome 
omparison tools (Carver et al., 2005, Kurtz et al., 2004a,Darling et al., 2004a), initially fo
used LGT dis
overy on genome-wide s
ans for is-lands of sequen
es spe
i�
 to parti
ular lineages of ba
teria (for example, (Perna et al.,2001, Parkhill et al., 2001, Tettelin et al., 2005, Hsiao et al., 2005)). Most re
ently,phylogeneti
 approa
hes are applied to dete
t LGT among genome-wide sets of putativeorthologs (Daubin et al., 2003, Ge et al., 2005, Beiko et al., 2005). Together, these studies



99point to low, but dete
table, levels of LGT among distantly related spe
ies with o

a-sionally higher rates found among organisms that o

upy similar environments. Closelyrelated organisms show higher levels of LGT, with intraspe
i�
 
omparisons showing thehighest levels. Two limitations of these analyses are the la
k of phylogeneti
 resolution,parti
ularly among intraspe
i�
 
omparisons, and the relian
e on annotated boundariesof genes in delineating 
andidate regions.Statisti
al and phylogeneti
 methods have been developed for dete
ting re
ombina-tion in aligned sequen
es of single genes or relatively short genomi
 segments. Onegeneral approa
h, referred to as nu
leotide substitution distribution methods in (Posadaet al., 2002), assesses atypi
al 
lusters of nu
leotide di�eren
es. Clusters 
ome in two�avors: groups of polymorphisms exhibiting the same topologi
ally dis
ordant pat-tern (Graham et al., 2005, Stephens, 1985), or an elevated rate of mutation in a singlelineage a
ross a segment of the alignment (Maynard Smith, 1998, Qiu et al., 2004,Sawyer, 1989, Worobey, 2001). The former indi
ates re
ombination between 
omparedstrains, while the latter implies a re
ombination with some unknown, more divergent,strain. Phylogeneti
 methods are most often applied in the 
ontext of dete
ting re-
ombination break points in sequen
e alignments (Grassly and Holmes, 1997, Husmeierand M
Guire, 2002, M
Guire and Wright, 2000, Minin et al., 2005). These methodsrequire longer alignments, are 
omputationally intensive, and have reportedly been out-performed by substitution distribution methods on simulated test data (Posada andCrandall, 2001).Genome-s
ale analyses of lateral transfer events have typi
ally relied on identi�
ationof in
ongruent tree topologies from phylogeneti
 analyses of sets of putative orthologous



100genes identi�ed by re
ipro
al BLAST analyses (Lerat et al., 2003, Ge et al., 2005, Ray-mond et al., 2002). This approa
h 
an be 
onfounded by errors asso
iated with BLAST,su
h as false-positive orthologs, is limited to identifying re
ombination events that o
-
ur within gene boundaries, and is unlikely to identify short re
ombined regions withingenes.Re
ently, a Markov 
lustering algorithm was used to partition orthologous pairsof genes, determined by an all-versus-all BLAST 
omparison of 144 fully sequen
edprokaryoti
 genomes, into maximally representative 
lusters (Beiko et al., 2005, Harlowet al., 2004). Bayesian phylogeneti
 analysis (for example, (Mau et al., 1999, Ronquistand Huelsenbe
k, 2003)) was applied to ea
h 
luster of four or more taxa to infer lateralgene transfer against the ba
kground of a 
onsensus 'supertree' of sequen
ed ba
teria.This approa
h is most su

essful in determining global pathways of gene transfer betweenphyla and divisions of prokaryotes, where homologous re
ombination is unlikely to haveplayed a signi�
ant role. Rather, these likely arise as illegitimate re
ombination events.Here, we develop a method to dete
t segments of 
losely related genomes that havebeen repla
ed with a homologous 
opy from another 
onspe
i�
 lineage, that is, an alleli
substitution. The method is not designed to dete
t non-homologous sequen
es thatmay have a

ompanied a homologous re
ombination event or homologous re
ombinationevents involving identi
al alleles.The method 
ompiles a list of polymorphism sites from a whole-genome multiplealignment, then applies s
ore fun
tions to lo
ate 
lusters dis
ordant with the predomi-nant phylogeneti
 signal. Identi�ed 
lusters 
an 
ross gene boundaries and non-
odingsequen
e. Our use of extreme value theory furnishes us with a statisti
ally defensi-ble 
riterion to assess signi�
an
e of these 
lusters in mu
h the same manner as the



101Karlin-Alts
hul statisti
s help interpret BLAST results (Alts
hul et al., 1990, Karlinand Alts
hul, 1990).We apply the re
ombination dete
tion method to the published genome sequen
es ofseveral E. 
oli (Perna et al., 2001, Blattner et al., 1997, Jin et al., 2002, Wei et al., 2003,Hayashi et al., 2001, Wel
h et al., 2002). Constru
tion of a multiple whole genome align-ment fa
ilitates a global survey of re
ombination among these E. 
oli isolates. Genomesequen
es must �rst be partitioned into lo
ally 
ollinear blo
ks (LCBs) - regions withoutrearrangement. Most LCBs 
ontain lineage-spe
i�
 sequen
e a
quired through lateralgene transfer or di�erential gene loss. To further 
ompli
ate matters, non-homologoussequen
es from di�erent organisms 
an integrate into di�erent lineages at a 
ommonlo
us (Perna et al., 2001). In a previous work, we developed a software pa
kage 
alledMauve (Darling et al., 2004a) that 
an 
onstru
t global multiple genome alignmentsin the presen
e of rearrangement and lineage-spe
i�
 
ontent. The Mauve alignmentsprovide a 
onvenient starting point for lo
ating polymorphi
 patterns indi
ative of in-traspe
i�
 re
ombination, whi
h we 
all alleli
 substitution.7.2 ResultsAs seen in Figure 28, the Mauve genome aligner takes the four E. 
oli and two Shigella�exneri genome sequen
es and returns 34 lo
al alignments spanning 3.4 Mb of ho-mologous sequen
e 
ommon to all strains. The majority of rearrangements o

ur inShigella genomes where inversions between 
opies of repetitive elements are relativelyfrequent (Blattner et al., 1997).Computer-assisted s
reening of the Mauve output �nds 733 problemati
 intervals
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Shigella flexneri 2A  2457T

Shigella flexneri 2A  301

E. coli CFT073

E. coli O157:H7 RIMD 0509952

E. coli O157:H7 EDL933

E. coli K12 MG1655

Figure 28: A multiple whole-genome alignment of six strains 
onsists of 34 rearrangedpie
es larger than 1 kb. Ea
h genome is laid out horizontally with homologous segments(LCBs) outlined as 
olored re
tangles. Regions inverted relative to E. 
oli K-12 areset below those that mat
h in the forward orientation. Lines 
ollate aligned segmentsbetween genomes. Average sequen
e similarities within an LCB, measured in slidingwindows, are proportional to the heights of interior 
olored bars. Large se
tions of whitewithin blo
ks and gaps between blo
ks indi
ate lineage-spe
i�
 sequen
e.



103Bipartition (split) Pattern KOOCS Number of SNDs Relative frequen
y((KSSOO)C) 111211 50,354 38.73((KSSC)OO) 122111 19,678 15.14((KOOC)SS) 111122 18,490 14.22((KSSOO)C) 111211 14,115 10.86((KSS)(OOC)) = KS 122211 9,882 7.60((KOO)(SSC)) = KO 111222 6,890 5.30((KC)(OOSS) = KC 122122 5,874 4.52Table 5: Common single nu
leotide di�eren
es have two alleles. Ea
h su
h nu
leotidedi�eren
e separates the six genomes into two 
lasses. Pattern 
odes are represented as 6-tuples of ones and twos (for allele 1 and allele 2) in the following order: (K) E. 
oli K-12MG1655, (O) E. 
oli O157:H7 EDL933, (O) E. 
oli O157:H7 Sakai strain RIMD0509952,(C) E. 
oli CFT073, (S) Shigella �exneri 2A 301, and (S) Shigella �exneri 2A 2457T.By 
onvention, K-12 is always allele one. For brevity, key groupings are denoted as KS,KO, or KC. The remaining 3.6% SNDs 
ome in over 50 di�erent patterns, in
ludingone quadripartition. See Appendix 1 in additional data �le 1 of Mau et al. (2006) foradditional frequen
ies.inside LCBs in whi
h base pairs do not properly align be
ause of gaps 
reated by lineage-spe
i�
 sequen
e and/or attempts to align non-homologous sequen
e. Deleting theseintervals from the alignment yields 130,008 high quality base pair di�eren
es. Commonbipartitions, 
onstituting 96.4% of all su
h di�eren
es, are listed in Table 5.We use the term 'single nu
leotide di�eren
e' (SND) to des
ribe the partition stru
-ture at a variable site in the alignment. A representative 100 base-pair (bp) segment ofthe 3.4 Mb alignment is presented in Figure 29 for illustrative purposes.All but 2% of variable sites are bi-alleli
, meaning ea
h site splits six strains into twogroups, 
alled a bipartition. Nearly 80% of the bi-alleli
 SNDs have a minor allele uniqueto the CFT, K-12, O157:H7, or S. �exneri lineage. The remaining bi-alleli
 SNDs dividethe lineages into three alternative pairings of sister taxa, giving rise to three alternativeunrooted tree topologies denoted as: ψKS (K-12 with S. �exneri, CFT with O157:H7);
ψKO (K-12 with O157:H7, CFT with S. �exneri); and ψKC (K-12 with CFT, O157:H7
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START CDS mutS

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAGGCTGAAAGCCCAGCATCC K-12 MG1655 

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC O157:H7 EDL933

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC O157:H7 Sakai

AACATCAGGGAGCCGGACTTAACCCCATGAGTACAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC CFT073

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC S.flexneri  2A 301

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC S.flexneri  2A 2457T

2855097^  2855107^  2855117^  2855127^  2855137^  2855147^  2855157^  2855167^  2855177^ Coordinates in K-12

  1        1      1             1                                                1Figure 29: Small sample segment of the alignment spanning the start of the mutS gene(denoted in blue). Lo
ation of a mismat
h is indi
ated by the integer '1' along the bottomrow. Five 
olumns 
ontain SNDs: TTTCTT, AAAGAA, AAATAA, GGGAGG, andGAAAAA. The �rst four share the same bipartition pattern (111211) and are deemedequivalent, even though one of them results from a transversion. The �fth SND is
onsidered distin
t based on its bipartition despite having the same mutation (A to G)found in the se
ond SND.

Figure 30: Three ex
ursions (KS, KO, and KC) spanning the alignment with K-12MG1655 as referen
e genome. The KS random walk plot, representing the dominant
lonal topology, de
reases more gradually than do the two other plots. Ex
ursions forthe dis
ordant topologies (patterns KO and KC) run parallel to one another, ex
ept ina 100 kb region at 2 Mb where KO abruptly in
reases. Parallel �at gaps 
ommon to allthree plots re�e
t K-12 lineage-spe
i�
 sequen
e.



105with S. �exneri).The four lineages serve as operational taxonomi
 units (OTUs) in our study of alleli
substitution in E. 
oli. When nu
leotides at a polymorphi
 site exhibit a partitionstru
ture explainable by a single point mutation, the indu
ed bipartition is said tobe 
ompatible with the enabling topology. Bipartitions labeled KS, KO, and KC inTable 5 are 
ompatible with the topologies ψKS, ψKO, and ψKC , respe
tively. Note thatfrequen
y of the KS pattern ex
eeds that of ea
h of its 
ompetitors by 3,000 SNDs,thus 
ertifying ψKS as the 'spe
ies' topology. The elevated frequen
y of SNDs uniqueto CFT roots topology ψKS as (((KS)O)C). The 102,000 topologi
ally uninformativelineage-spe
i�
 SNDs nevertheless provide information that our method uses to assessre
ombination.We de�ne three 
omplementary s
ore fun
tions that dis
riminate between KS, KO,and KC patterns. Ea
h of these s
ore fun
tions assigns an integer value to ea
h SNDpattern. Moving a
ross the 
hromosome of referen
e strain MG1655, we keep a 
umula-tive sum of the s
ores assigned by ea
h fun
tion to 
onse
utive SNDs in the alignment.Graphi
al representations of 
umulative s
ores, 
alled random walk plots or ex
ursions,
an reveal large-s
ale variations in feature 
omposition. Ex
ursions for ea
h of the threetopologies are plotted 
on
urrently in Figure 30.A large phylogeneti
 anomaly appears midway through the alignment. Magni�
ationof a 100 kb segment between 1.95 and 2.1 Mb reveals a 
ore 40 kb region in whi
h KOSNDs are the dominant pattern of substitution, �anked by transitional regions for whi
h
ψKO serves as the 'gene tree' as well.Global random walk plots highlight grossly deviant regions. In this alignment, asolitary segment stands out. All other regions appear indistinguishable from one another



106in Figure 30. Unless stated to the 
ontrary, DNA sequen
e and genes from the largeatypi
al region (from sdiA to gnd) are ex
luded from further 
omputations (a separateanalysis of this region is in
luded in Appendix 2 of additional data �le 1 of Mau et al.(2006)).7.2.1 Lo
al variation in phylogeneti
 signalIn Figure 30, 
lusters of like patterns labeled KS, KC, or KO generate tiny, imper
eptiblebumps in the 
orresponding random walk plots. Examined at higher resolution (datanot shown), they 
an be seen to pun
tuate ea
h ex
ursion. However, manual s
anningof high-resolution random walk plots is tedious, time 
onsuming, and error-prone. InMaterials and methods, we des
ribe an alternative strategy that automati
ally s
ans for
lusters at the lo
al level.The s
ore fun
tions generating Figure 30 are designed to eli
it large positive lo
als
ores (di�eren
es in 
umulative s
ores evaluated at nearby positions) whenever 
lustersof like, topologi
ally informative, patterns are en
ountered. When that lo
al s
ore ex-
eeds a predetermined threshold, the interval between the delimiting SNDs is de
lareda high s
oring segment (HSS). The strategy behind this s
heme is exa
tly analogous toBLAST (Alts
hul et al., 1990), in whi
h high s
oring segments denote probable homologybetween the query and one or more referen
e sequen
es.When two lineages share a nu
leotide that is not the result of a single mutation ina 
ommon an
estor, a homoplasy is said to have o

urred. Homoplasies arise eitherthrough multiple mutations at a 
ommon site (
onvergent evolution) or re
ombination.The former tend to be distributed randomly about an alignment, whereas a re
ombina-tion event typi
ally produ
es a 
luster of nu
leotide di�eren
es at nearby sites exhibiting



107the same SND pattern. Our approa
h identi�es su
h 
lusters of nu
leotide di�eren
eswith a 
ommon phylogeneti
 partitioning pattern. Variability in mutation rates andpatterns in di�erent 
hromosomal regions and ba
terial lineages might also lead to phys-i
al 
lustering of similar substitutions. Although the 
lustering of sites with similarpatterns strongly suggests homologous re
ombination between lineages, we 
annot ruleout the possibility that some 
lusters arise by independent mutation-driven pro
esses.Simple s
ore fun
tions alone 
annot distinguish between these two possibilities, thoughthe latter is believed to be relatively rare.Our method relies on the relative intensity of parti
ular SND patterns (the one ofinterest versus all others) to measure 
luster formation, rather than the absolute numberof SNDs in any given �xed length segment of the alignment. As a result, lo
al mutationalintensity is fa
tored out of the analysis. We assert this is legitimate provided the overallrate of mutation is not too great, and lo
al deviations from that average are not severe.A more detailed study is presented in Appendix 5 of additional data �le 1 in Mau et al.(2006). Random SNDs 
an and do form 
lusters of identi
al patterns simply by 
han
e.Given the number of SNDs and their relative frequen
ies within the alignment, we wishto distinguish 'bumps' that are too large to have o

urred by 
han
e.Here again, BLAST statisti
s (Karlin and Alts
hul, 1990) serve as the model forassessing signi�
an
e. Random walk theory provides the tools for assessing high s
oringsegments, and the 
orresponding extreme value distributions (EVDs) guide sele
tion ofappropriate thresholds. Random walks (as opposed to random walk plots) are sto
hasti
pro
esses operating under a �xed set of probabilities at ea
h stage.
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yciE yciF yciG trpA trpB trpC trpD trpE trpL
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E. coli  K-12 genome coordinates

2 CSM1 CSM

End of HSS

 13

yciG

0

KO SND KC SND

KS SND

KS random walk

Alignment gapFigure 31: The KS lo
al random walk plot showing homologous re
ombination in thetryptophan (trp) operon. Genes are re
tangular boxes positioned above or below the axisbased on trans
ribed strand. KS SNDs form two non-overlapping MSCs with signi�
antlo
al s
ores ex
eeding 170. Both MSCs, with a 
ombined length under 2 kb, are 
ontainedin a single 6.5 kb HSS 
overing most the trp operon. The positions of ea
h KO, KC,and KS SND in E. 
oli K-12 are shown above the KS ex
ursion. Random walk valuesbelow 50 are not plotted, resulting in the absen
e of visible KC or KO ex
ursions.In the Materials and methods se
tion, we apply the relevant theory to derive thresh-olds. Using the appropriate extreme value distribution as an arbiter, we 
hose a signi�-
an
e threshold of 170 for 
lusters of KS SNDs and the same value of 100 for both KOand KC, as their frequen
ies are nearly identi
al outside the large atypi
al region (4.85%versus 4.57%). These thresholds de�ne 186 high s
oring segments that span 7.5% of thesequen
e alignment. A breakdown by pattern and range of s
ores is arrayed in Tables 2and 3.We deviate from BLAST proto
ols in one important respe
t: a high s
oring segmentmaximizes the lo
al s
ore, whi
h is the primary goal of sequen
e alignment. Here,we want to isolate sub-regions within an HSS that individually ex
eed the signi�
an
ethreshold. Our rationale is that sequen
e between sub-regions may not have parti
ipatedin the re
ombination, and we want to identify only those genomi
 intervals that possessprima fa
ie eviden
e of re
ombination.



109A minimal signi�
ant 
luster (MSC) is a smallest subset of 
ontiguous SNDs generat-ing a lo
al s
ore above the threshold. To avoid ambiguity, overlapping MSCs supportingthe same topology are merged into a single representative MSC. Most high s
oring seg-ments 
onsist of a single su
h 
luster, but HSSs with more than 150 SNDs often 
ontaintwo or more disjoint MSCs.HSSs and MSCs are represented graphi
ally by modifying global random walk plots.By subtra
ting o� the underlying negative trend, only positive lo
al s
ores are displayed.Figure 31 shows a lo
al random walk plot for the HSS 
overing the seven genes ofthe tryptophan operon. The trp operon was the �rst reported example of homologousre
ombination in E. 
oli (Stoltzfus et al., 1988).Although the entire trp operon may have been ex
hanged in a single event, onlytrpA and trpE 
ontain 
lusters of KS SNDs that individually give rise to statisti
allysigni�
ant lo
al s
ores. Moreover, the �rst MSC 
learly in
ludes in ex
ess of 200 bpdownstream of the trp operon - eviden
e that downstream trans
ription terminationsignals have also been subje
t to homologous re
ombination. In this manner, MSCsfa
ilitate more pre
ise targeting of 
hromosomal regions impli
ated in re
ombination.This 
riterion modestly in
reases the number of re
ombined segments to 216 (75, 62,79 for KO, KC, KS, respe
tively) while redu
ing the amount of parti
ipating sequen
efrom 251 kb to 129 kb. We outline a pro
edure for �nding non-overlapping minimalsigni�
ant 
lusters inside high s
oring segments in Materials and methods.



110HR dete
ted Genes Per
ent Re
ombined χ2 s
ore Multi-Fun Level 2 
ategories5 144 3.5 4.52 Ribosome andpeptidogly
an stru
ture10 237 4.2 5.47 Cell division, 
ell prote
tion,and adaptation to stress14 279 5.0 4.35 Protein-related information20 329 6.1 2.94 RNA-related information386 4,035 9.6 Not Reported All other fun
tions,in
luding unknown48 357 13.5 9.24 Building blo
k biosynthesis16 109 13.8 3.21 DNA-related information7 40 17.5 3.56 Group translo
ators (PTS)9 46 19.6 6.24 MotilityTable 6: Categories with few members su
h as ribosome and peptidogly
an stru
tureare 
ombined together, as are three types of 
ell pro
esses. We 
omputed a χ2 goodness-of-�t statisti
 for ea
h 
ategory, but do not report p values be
ause dependen
ies existbetween 
ategories.7.2.2 Gene 
ontent of regions that underwent re
ent alleli
 sub-stitutionAlthough our method identi�es re
ombination events independently of gene boundaries,it is interesting to look at the types of genes and gene produ
ts involved in these events.To this end, we extra
ted a list of genes en
oded in regions deemed atypi
al by ourrandom walks. Among the 4,353 genes in K-12, 3,107 align a
ross all six genomes. Ofthese, 271 genes interse
t a minimal 
luster segment. When augmented with 40 genesfrom the atypi
al region, 10% of shared genes exhibit eviden
e of re
ombination. A tableof the 186 high s
oring segments, subdivided into MSCs and identifying a�e
ted genes,is provided as Additional data �le 2.We examined this list of 311 genes in light of gene fun
tion assignments made usinga 
ontrolled vo
abulary 
alled MultiFun (Serres and Riley, 2000) that supports multiple



111fun
tional 
lassi�
ations for a given gene. The 3,107 genes aligned by Mauve in allsix genomes have been 
lassi�ed with 5,550 gene fun
tions. Nearly 2,000 genes have asingle 
lassi�
ation (many are 'Unknown fun
tion'). By 
ontrast, six genes have seven'Level 2' fun
tions. This analysis revealed an over-representation of four 
ategories andunder-representation in seven others (Table 6).Highly 
onserved genes that en
ode 
omponents of the ribosome and genes involvedin peptidogly
an biosynthesis show little eviden
e of dete
table re
ombination. Con-versely, many genes involved in motility and 
hemotaxis undergo alleli
 substitution.Chemotaxis may also be related to elevated re
ombination dete
ted among genes en
od-ing 
omponents of phosphotransferase transport systems (PTSs) sin
e these genes 
andouble as sensors for substrates su
h as glu
ose and mannose (Zeppenfeld et al., 2000).Genes involved in basi
 pro
essing of 
ellular information, su
h as repli
ation, tran-s
ription and translation, reveal an unexpe
ted di
hotomy: genes dedi
ated to RNAand protein metabolism are refra
tory to re
ombination, but genes involved with DNArepli
ation, repair and re
ombination appear prone to alleli
 substitution. Equally sur-prising is a bias favoring evident re
ombination among genes involved in small mole
ulebiosynthesis. Examples of biosyntheti
 genes that support the pairings in topology ψKCin
lude members of the aromati
 amino a
id pathway (aroP, aroD, and aroG) as well asthe pyrimidine produ
ing 
arB (also known as pyrA). SND 
lusters supporting topology
ψKO are present in pyrI, pyrB, and several genes in the histidine operon. Finally, purD,purF, leuDC, modABC, and two genes in the trp operon (Figure 31) 
ontain 
lusters
ompatible with the 
lonal topology, but at mu
h higher intensity than elsewhere in thegenome.
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Figure 32: Mosai
 operons and genes. Three of six rha genes (rhaB, rhaA, and rhaD)belong to an operon on the reverse strand. This operon is unusual be
ause well- de�nedre
ombination events 
learly fall within gene boundaries; rhaD 
ontains two dense KC
lusters, whereas rhaA and rhaB 
ontain predominantly KS and KO SNDs, respe
tively.In a nearby operon 
onsisting of fdoG, fdoH, fdoI, and fdhE, there has been a KCintrageni
 re
ombination event with fdoG a mosai
, resulting from two re
ombinationevents, one of whi
h is shared with fdoH.7.2.3 Mosai
 operons and genesWith over 216 re
ombined segments interse
ting 271 genes, this group of E. 
oli genomesis truly a pat
hwork of its 
onstituent members. Although genes within the trp and hisoperons 
ontain multiple 
lusters of the same pattern (KS for trp, KO for his), su
huniformity a
ross operons is atypi
al (Omel
henko et al., 2003). Figure 32 shows a shortstret
h of aligned sequen
e 
ontaining two mosai
 operons.Besides fdoG (shown in Figure 32), six other genes - polB, mutS, speF, re
G, a
tP,and yfaL - show eviden
e of mosai
ism. Three of these genes�polB, mutS, and re
G�areinformational genes involved in DNA repli
ation and repair. Ea
h mosai
 gene 
ontainstwo minimum signi�
ant 
lusters generated by di�erent partition patterns. A 
loserinspe
tion of one of these genes, speF, suggests that all three phylogeneti
 signals maybe present, as shown in Figure 33.Other mosai
 genes undoubtedly exist within these strains, but their phylogeneti
signal is too short or too weak to register in a genome-wide s
an. Full genome s
ans
ome at a 
ost; one must sa
ri�
e sensitivity to maintain spe
i�
ity. At present, we are
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Figure 33: Random walk plots for positive lo
al s
ores in the vi
inity of the speF gene.speF is a mosai
 gene by virtue of its KS and KO 
lusters. Note the small 
luster ofKC SNDs appears to divide a large KS segment near 
oordinate 718,600. This short KCspike, though not statisti
ally signi�
ant on a whole genome s
ale, would undoubtedlypass a single gene substitution distribution type test.
Shigella flexneri

E. coli  K12 MG1655

E. coli CFT073

E. coli O157:H7

{

{

{

{

(122,222) = 10.8 %

(111,122) = 14.2 %

(111,211) = 38.7 %

(122,111) = 15.1 %
KO (111,222) = 5.3 %

OS (122,122) = 4.5 %

KS (122,211) = 7.6 % OC
CS

KCFigure 34: Per
entage of SNDs supporting ea
h of three topologies in a phylogeneti
network for six E. 
oli genomes (four OTUs). Bla
k lines des
ribe the 'spe
ies' topology.Green, blue, and orange lines indi
ate the alternative pairings of sister taxa that resultfrom KS, KO, and KC re
ombinations respe
tively. Also shown is the per
entage ofSNDs supporting ea
h bipartition in Table 5.
ontent to underestimate the true amount of re
ombination in order to eliminate falsepositives.7.3 Dis
ussionNatural transformation, transdu
tion, and 
onjugation are three me
hanisms for trans-porting foreign DNA into the 
ell. The relative 
ontribution of ea
h me
hanism variesfrom spe
ies to spe
ies. For example, transformation is the dominant mode of transferin ba
teria su
h as Neisseria meningitidis and Heli
oba
ter pylori that are naturally
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ompetent, that is, able to absorb small pie
es of naked DNA. As E. 
oli is 
ompetentonly under extreme 
onditions, typi
ally in the laboratory, it is expe
ted that this formof transformation may play a minor role in nature. Exogenous DNA 
an also entervia phage transdu
tion or 
onjugation, whi
h are expe
ted to be the primary sour
e ofexogenous DNA for E. 
oli. Transdu
ing phages 
an deliver large fragments of genomi
DNA from their previous ba
terial host into a re
ipient strain. DNA transferred via
onjugative me
hanisms 
an be even larger.The lengths of re
ombined segments reported in the previous se
tion are typi
allyshort. Half the intervals are shorter than 1 kb, and 80% are less than 2 kb. DNAfragments delivered by transdu
ing phages might be expe
ted to be 
onsiderably larger(30 to 60 kb). The size di�erential between entran
e and in
orporation mole
ules hasbeen partially re
on
iled by experiments in whi
h site-spe
i�
 DNA was pa
kaged intophages and transdu
ed into K-12 
ells (M
Kane and Milkman, 1995). S
reening forre
ombinants in the proximity of the trp operon, the authors found average repla
ementsizes to be in the 8 to 14 kb range. Moreover, multiple repla
ements were dete
ted insome instan
es. In a follow-up paper (Milkman, 1997), the level of sequen
e dissimilarity(from 1% to 3%) between re
ipient and donor strains was shown to 
orrelate with thedegree of abridgement by restri
tion endonu
leases. The length of a typi
al re
ombinantin our study is still an order of magnitude less than that reported by M
Kane andMilkman (M
Kane and Milkman, 1995), but they based their 
on
lusions on restri
tionsite analysis, whi
h has a limited ability to dete
t short fragments. A
tual in
orporationsin their experiments 
ould 
on
eivably have been more frequent and shorter. Overlappingre
ombination events at parti
ular sites are also likely to 
ontribute to the net redu
tionsin observed in
orporation sizes.



115Our approa
h dete
ts signi�
ant 
lusters of phylogeneti
ally informative SNDs, butdoes not tell us whi
h lineages parti
ipated in the re
ombination. When presented withfour OTUs, re
ombination is possible between six undire
ted donor-re
ipient pairs: KO,CS, KS, OC, KC, and OS. These alternative histories 
an be jointly represented as aphylogeneti
 network (Figure 34).For example, a high s
oring KC segment indi
ates that the donor and re
ipientlineages are either K-12 and CFT, or O157:H7 and S. �exneri. Exa
tly whi
h pair oflineages is involved in the transfer 
an sometimes be determined by examining the jointdistribution of all seven SND patterns. Re
ombinant a
tivity in glyS and the four genesto its right is illustrated in Figure 35.The 
olored intervals in Figure 34 share a 
ommon feature: the presen
e of topolog-i
ally informative SNDs is a

ompanied by the absen
e of SNDs from two paired sistertaxa. For example, no 'O157 only' or 'Shigella only' SNDs are present in the KC/OSinterval inside glyS, strongly suggesting that the O157:H7 and S. �exneri lineages wereinvolved in the transfer. The other two intervals 
oin
ide with gene boundaries. Whenviewed in isolation, the genes yiaA and yiaH appear to be reasonable 
andidates forre
ombination. Yet only the KC re
ombinant inside the glyS gene is dete
table by ourwhole genome signi�
an
e thresholds.Sequen
e divergen
e 
an redu
e the likelihood that homologous re
ombination o

ursbetween orthologous genes, but does not address the underlying me
hanisms that leadto divergen
e in the presen
e of rampant re
ombination. The restri
tion of di�erentlineages of ba
teria to distin
t ni
hes 
ould a
t to prevent gene �ow, but in the 
aseof E. 
oli and Salmonella, the ni
hes overlap. The barriers to ex
hange might alsore�e
t more a
tive ex
lusion of foreign DNA by me
hanisms su
h as restri
tion enzyme



116

3,721,000 3,722,000 3,723,000 3,724,000 3,725,000 3,726,000

E.coli K−12 genome coordinates

Other

KO

KC

KS
S only
C only
O only
K only

glyS glyQ yiaH yiaA yiaB

Figure 35: The lo
ation of all SNDs in a 5 kb region. In 
lusters demar
ated by 
ol-ored lines, note the 
orresponding absen
e of two more 
ommon types of SNDs. Threediamonds in lighter shades of blue, green, and red are 
ompatible tri-partitions. Col-ored lines demar
ate regions where the absen
e of lineage-spe
i�
 SNDs is o�set by anin
rease in the 
orresponding re
ombinant pattern (for example, in yiaA, no K-12 or S.�exneri only SNDs).expression. Perhaps the most appealing explanation for the phenomenon would invokethe a
tivity of ba
teriophages, transposons and 
onjugation-promoting elements as thekey determinants of re
ombinational potential between taxa. Given the propensity ofthese mobile elements to parti
ipate in geneti
 ex
hange within spe
ies and their oftennarrow host ranges, we might expe
t that they promote re
ombination within a spe
iesbut 
annot transfer to more diverse organisms. The la
k of extensive re
ombination oforthologous sequen
es between spe
ies may result from a 
ompetition between ba
teriaand phage that 
an a
tivate rapid evolution of barriers to phage infe
tion. Our estimatefor a higher rate of homologous re
ombination among E. 
oli unders
ores the dis
repan
ybetween rates of intraspe
ies re
ombination, whi
h appear to be quite 
ommon, and ratesof re
ombination of orthologous genes between spe
ies su
h as E. 
oli and Salmonella,whi
h appear to be mu
h less frequent (Daubin et al., 2003).



117Earlier 
omparisons of di�erent E. 
oli strains (Milkman, 1997, Dykhuizen and Green,1991, Reid et al., 2000, Guttman and Dykhuizen, 1994) found re
ombination among sev-eral distin
t sets of genes. The a�e
ted genes in these studies were not randomly sele
tedand may not have been representative of the shared gene 
omplement. Although ourmethod surveys all genes, the genomes we 
ompared are heavily skewed towards humanpathogens. As additional E. 
oli strains are sequen
ed, the role of homologous re
om-bination in ba
terial genome evolution will be
ome 
learer, and may for
e reassessmentof traditional methods for des
ribing relationships among ba
terial taxa (O
hman et al.,2005, Feil and Spratt, 2001).Our analyti
al methods are straightforward here be
ause the number of unrootedtopologies is the same as the number of topologi
ally informative bipartitions. This
orresponden
e de
ays exponentially as more operational taxonomi
 units are added.Sometimes going from four OTUs to �ve requires a new analyti
 pro
edure (for example,see (Zhaxybayeva et al., 2004)). We leave the 
hallenging problem of extension to moretaxa for future work.7.4 MethodsThe Mauve alignment tool produ
es an output �le 
ontaining separate alignments forea
h lo
ally 
ollinear blo
k. Con
atenation of LCBs results in a G × M matrix ofnu
leotides and gap symbols, where G is the number of genomes and M is the lengthof gapped alignments a
ross all blo
ks. Ea
h matrix 
olumn represents one site inthe 
onsolidated alignment. Restri
ting attention to 
olumns 
ontaining at least onenu
leotide di�eren
e but no gaps results in a G×M ′ sub-matrix ∆ 
omposed solely of



118single nu
leotide di�eren
es. Automated s
reening of the Mauve alignment (Figure 28)�ltered out SNDs in regions of poor alignment quality, resulting in a ∆ with dimension6 by 130,008.Numerous s
oring s
hemes have been devised to identify and assess the statisti
alsigni�
an
e of mole
ular sequen
e features on a genomi
 s
ale (Karlin and Brendel,1992, Karlin et al., 1991). One general approa
h 
al
ulates average s
ores within asliding window (for example, (Lobry, 1996, S
herer et al., 1994)). We use an equallyversatile method that 
omputes 
umulative s
ores based on a s
ore fun
tion, evaluatedat ea
h 
olumn of δ (see (Karlin and Alts
hul, 1990) for other appli
ations).Let Ξ = KS, KC, KO represent the three dis
ordant SND patterns in Table 5,and let ψξ be the unrooted topology 
ompatible with pattern ξ ∈ Ξ. We de�ne three
omplementary s
ore fun
tions on SNDs to �lter 
on�i
ting phylogeneti
 signals:
Scoreξ(s) =























+D, if φ(s) = ξ

−D, if φ(s) ∈ Ξ \ {ξ}

−1, if φ(s) ∩ Ξ = ∅where s is a SND and φ(s) is the 
orresponding partition pattern in Table 5, and
D = 13. For a given ξ ∈ Ξ, the 
umulative s
ore at the nth 
olumn in ∆ is the partialsum:

Sξ
n =

n
∑

i=1

Scoreξ(si)

= Sξ
n−1 + Scoreξ(sn)

Sξ
0 = 0These s
ore fun
tions share a key 
hara
teristi
 of alignment s
oring s
hemes; both



119generate high s
oring segments that identify regions of interest. In the 
ase of alignments,a high s
ore segment represents a likely sequen
e homology. A signi�
ant di�eren
ebetween our analysis and sequen
e alignment is that substitution matri
es are empiri
allyderived from a test set (for example, PAM or BLOSUM). Here, D is not a parameterin an underlying sto
hasti
 model of evolution, but rather a tuning parameter in adiagnosti
 spe
i�
ally designed to dete
t re
ombination. The value D = 13 was inspiredby the observation that the most frequent topologi
ally informative pattern, KS, hasan observed frequen
y of 7.6%, approximately the re
ipro
al of 13. Alternative integervalues were tried and reje
ted.S
ore fun
tions generate high s
oring segments whenever they en
ounter a 
lusterof SND patterns supporting one topology but are dis
ordant with other 
hoi
es. Fora given topology ψξ, we de�ne Scoreξ(η) to take on positive values when pattern η is
ξ and negative values otherwise (η 6= ξ). As dis
ordant patterns are antitheti
al toone another, their weights should be equal to but opposite from the one being s
anned.Neutral SND patterns are not individually disruptive to the underlying signal, but inaggregate they degrade the signal. These non-informative patterns are down-weightedand made integer-valued as in substitution matri
es.Hen
e, a large lo
al s
ore�the equivalent of a high s
oring segment�is eviden
e forre
ombination between two of the lineages paired by ξ (for example, ξ = KS asso
iatesK-12 with S. �exneri and O157:H7 with CFT).Random walk plots 
onne
t the dots between partial sums that are 
omputed fromSNDs as they o

ur in ∆. By 
ontrast, random walks are translation invariant sto
hasti
pro
esses governed by the relative frequen
ies in ∆, irrespe
tive of order. We augment



120the random walk transition probabilities with an additional 'terminator' state. Termi-nators break a global alignment into several smaller sub-alignments, and are used torepresent alignment fragmentation 
aused by 'large' gaps (> 15 bp in one lineage), spu-rious alignments, or LCB boundaries (Figure 28). A

ordingly, for ea
h ξ ∈ Ξ, randomwalk in
rements are distributed a

ording to the following probabilities:
Xξ(S) =







































+D with Pr(φ(s) = ξ) = πξ

−D with Pr(φ(s) 6= ξ) = π−ξ

−1 with Pr(φ(s) = ξ) = πother

−100, 000 with Pr(s is a break in the alignment) = πbreakwhere D = 13, πKO = 0.048, πKS = 0.076, πOS = 0.045, πother = 0.826, πbreak =

0.005 and π−ξ de�ned as:
π−ξ =

∑

η∈Ξ\{ξ}

1− πother − πbreak − πξSin
e the expe
ted value E(Xξ) < 0,∀ξ, sums of these identi
ally distributed vari-ables generate transient random walks. Random stopping times, de�ned re
ursivelyby:
τ0 = 0

τ1 = min{i : Si < S0}

τk+1 = min{i : Si < Sτk
} for Sk =

k
∑

i=1

Xξ
iform a stri
tly de
reasing set of ladder points. Though Sk depends on ξ, we suppressit for ease of exposition. The horizontal distan
es between 
onse
utive ladder points
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Figure 36: Statisti
al justi�
ation of threshold values −100, 100, and 170 for topologiesKO, KC, and KS, respe
tively�used to identify re
ombination events. Values on thex-axis are maximal lo
al s
ores. EVD probability densities for the maximum maximallo
al s
ore attained by random walks of length M ′ appear as bell-shaped 
urves with apronoun
ed skew to the right. Threshold values, demar
ated by verti
al lines, 
orrespondto 
onservative signi�
an
e levels (α = 0.05) for these distributions.
τk+1 − τk, are 
alled ladder epo
hs. The lo
al re
ord height (LRH) of the kth epo
h isde�ned by:

LRHk = max
τk−1≤t<τk

{St − Sτk−1
} ≥ 0Ladder epo
hs measure the size of a high s
oring segment in SND units rather thanbase pairs (
hain length M ′ versus M). The number of ladder epo
hs in a random walkof size N is denoted by Λ(N). The distribution of the maximum value in a sequen
e oflo
al re
ord heights is an extreme value distribution (EVD) with parameterization:

Pr( max
j≤Λ(N)

LRHj > x) = exp(−NKe−µk)Here µ is the positive solution of an equation involving the moment generating fun
-tion:
mgfξ(. . . ) =

∑

j

πje
µXξ(sj)

= 1The value of µ is solved for numeri
ally. For ψKC , the equation:



122
mgfKC(µ) = 0.045e13µ + .124e−13µ + .826e−µ + .005e−100,000µ = 1has a positive solution at µ = 0.1354 (µ = 0 is a trivial solution). The value of K 
anbe 
omputed as a rapidly 
onverging in�nite sum (see Appendix of (Karlin and Alts
hul,1990)). We 
hose instead to simulate 2, 000 random walks of size N = 10, 000 using thestatisti
al pa
kage R (http://r-proje
t.org). The largest lo
al re
ord height attainedover the 
ourse of ea
h simulation is saved. The fun
tional form of the EVD (equation1) is then �t to a probability histogram of 2, 000 stored maxima. The estimated valuesof K and Λ are 
ombined with an N = M ′ to adjust for the a
tual alignment size(M ′ = 129, 000 after ex
luding the atypi
al region) in ea
h EVD. The densities of thethree EVDs are plotted in Figure 36.Ladder points, ladder epo
hs, and lo
al re
ord heights are easily 
omputed with afew simple R 
ommands. Finding minimal signi�
ant 
lusters�a smallest possible 
lusterof SNDs with a signi�
ant s
ore�is more 
hallenging. A naïve approa
h takes ea
h SNDwithin a high s
oring segment as the start of some lo
al s
ore, then iteratively addssu

essive terms to lo
al s
ores in parallel until one of the sums ex
eeds the threshold.The SNDs produ
ing that sum 
onstitute the �rst MSC. The pro
ess 
ontinues on theremaining sums to seek out additional, non-overlapping MSCs. The algorithm is O(n2)in the number of SNDs. Su
h a brute for
e approa
h works here be
ause alignment gapssplit the problem into 186 small pie
es, the largest of whi
h 
ontains fewer than 700SNDs.
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124Chapter 8
Analysis of gene �ux in enteroba
teria
Genome 
omparisons of enteri
 ba
teria demonstrate that an isolate of any given spe
ieswill 
ommonly 
ontain substantial novel geneti
 
ontent not found in other isolates ofthe same spe
ies (Tettelin et al., 2005). The me
hanism by whi
h ba
teria a
quire andmaintain su
h lineage-spe
i�
 
ontent remains obs
ure, however the 
onsensus belief isthat su
h 
ontent has been a
quired by lateral gene transfer (Ragan and Charlebois,2002). One hypothesis suggests that novel 
ontent, o

asionally referred to as ORFans,is 
ommonly introdu
ed into the 
hromosome by phage (Daubin and O
hman, 2004,Fis
her and Eisenberg, 1999), and that phage harbor a wealth of biodiversity (Edwardsand Rohwer, 2005, Sullivan et al., 2006). Indeed, the high A+T 
ontent of many novelgenes relative to the ba
terial 
hromosome supports su
h a hypothesis. However not allnovel genes show a distin
t A+T 
ontent or 
odon usage bias relative to the average
hromosomal distributions. One possibility is that genes without high A+T 
ontentare also of phage origin and had high A+T 
ontent when they originally entered the
hromosome, but have sin
e ameliorated through dire
tional sele
tion to appear similarto the rest of the 
hromosome. Thus, su
h genes are thought to have been resident inthe ba
terial 
hromosome for a substantially longer period of time than novel genes withhigh A+T 
ontent. Another likely explanation involving phage transdu
tion is that thegene had only re
ently been a
quired by the phage population and the sequen
e had not



125yet gained an A+T bias prior integration with the re
ipient ba
terial 
hromosome.Given that mi
robes somehow rapidly a
quire novel 
ontent, we must also 
onsiderthe pattern of gene loss that allows mi
robes to maintain their 
hara
teristi
ally 
ompa
tgenomes. If the a
quisition rate and the deletion rate are approximately equal, wemight expe
t to see arbitrary deletions of 
ore genome 
ontent at a frequen
y equal toobservations of novel 
ontent, unless deletions of a
quired 
ontent were strongly favored.Frequent deletion of a
quired 
ontent 
ould arise due to either sele
tive pressure ormutation bias, or some 
ombination thereof. Spe
i�
ally, deletions in preexisting genes
ould be strongly sele
ted against, or a
quired geni
 
ontent 
ould be inherently unstable,for example if it were �anked by mobile geneti
 elements.When novel genes integrate into the 
hromosome, we may ask how they go on tointegrate with the host mi
robe's regulatory system. Do su
h novel genes slowly 
ometo be expressed by 
han
e mutations upstream of the 
oding region? Given that enteri
ba
teria appear to have a mutational bias in favor of small deletions (Mira et al., 2001),it seems di�
ult to believe that a gene would be maintained long enough to a
quire afun
tional promoter through random mutation before it were to be destroyed.Is it possible that novel genes 
ome preloaded with fun
tional promoters and tran-s
ription fa
tor binding sites? If this is the 
ase, then it seems extremely likely that theregulatory logi
 upstream of the novel gene evolved in a 
losely related host, and thusthe gene 
ould be 
onsidered to be already �naturalized� to the host mi
robe, with onlysome �ne tuning ne
essary for optimum �tness. In this s
enario the gene may appearnovel simply be
ause it is not yet part of our sequen
e database, but it is hardly novelto the re
ipient organism.



126Organism Genome sizeE. 
oli K12 MG1655 4654221E. 
oli O157:H7 EDL933 5623806E. 
oli CFT073 5231428Shigella �exneri 2457T 4988914Salmonella enteri
a Typhi Ty2 4791961Yersinia pestis KIM 4781914Yersinia pseudotuber
ulosis IP32953 4840899Erwinia 
hrysanthemi 3937 4922802Erwinia 
aratovora SCRI1043 5064019Table 7: These nine enteri
 ba
teria 
ompose a phenotypi
ally diverse set of organisms.The E. 
oli, Shigella, Salmonella, and Yersinia are human pathogens, while the Erwiniaare plant pathogens. E. 
oli K12 MG1655 is a non-pathogeni
 laboratory strain.A third intriguing possibility is that the operon stru
ture of the mi
robial 
hromo-some and the mi
robial gene expression system has evolved to expli
itly favor a
quisitionof novel geneti
 
ontent and its rapid in
orporation into the host regulatory program.In su
h a model, novel genes 
ould potentially integrate into an existing operon andimmediately be
ome expressed, without disrupting the expression of neighboring genes.In fa
t, previous studies have demonstrated a propensity for novel genes to integrateinto existing operon stru
ture (Pri
e et al., 2006).To better understand the role of gene a
quisition and loss in ba
teria we analyzemultiple-genome alignments of enteri
 ba
teria. We �rst study patterns of gene �uxamong a group of nine enteri
 ba
teria from a broad phylogeneti
 spe
trum (listed inTable 7), then narrow the s
ope of our analysis to a group of twelve 
omplete E. 
oliand Shigella genomes (Table 8). By analyzing a set of distantly related taxa and ase
ond group of 
losely-related taxa, we hope to gain insight into the rate at whi
hre
ent mutations be
ome �xed in mi
robial populations.



127Organism Genome size Mode of pathogenesisE. 
oli K12 MG1655 4654221 Non-pathogeni
E. 
oli O157:H7 EDL933 5623806 EHECE. 
oli O157:H7 Sakai 5594477 EHECE. 
oli HS 4643538 Non-pathogeni
E. 
oli E24377A 4980187 ETECE. 
oli CFT073 5231428 Uropathogeni
E. 
oli UTI89 5179971 Uropathogeni
Shigella boydii 227 4646520 InvasiveShigella �exneri 2457T 4988914 InvasiveShigella �exneri 301 4828821 InvasiveShigella dysenteriae 197 4551958 InvasiveShigella sonnei 046 5039661 InvasiveTable 8: Completely sequen
ed E. 
oli isolates presently analyzed. Many of these E.
oli isolates are human pathogens, possibly skewing the results of our analysis. EHECindi
ates enterohaemorrhagi
 E. 
oli, while ETEC indi
ates enterotoxigeni
 E. 
oli.8.1 ResultsThe Progressive Mauve alignment system 
omputes an alignment of the nine enteri
genomes listed in Table 7 using 24 hours of 
ompute time on a 2.8GHz Pentium 4 CPU.The resulting alignment 
ontains 425 Lo
ally Collinear Blo
ks with a total average lengthof 18.7Mbp of genomi
 sequen
e. Figure 37 shows a 
omparison of the stru
ture of ea
hgenome as drawn by the Mauve visualization system. We then apply the ba
kbonedete
tion algorithm des
ribed in Chapter 5 to dete
t regions 
onserved among two ormore genomes. Using a random-walk s
ore threshold of 2727 yields a total of 23498segments 
onserved among two or more taxa. Of these, 7658 segments are less than5nt in length and result from merging pairwise segmental homology predi
tions withslightly di�erent endpoints. We dis
ard the short segments, yielding a set of 15840high-
on�den
e segments 
onserved among two or more genomes. In
lusion of segments
> 5nt present in only a single genome under study yields a total of 31197 segments.



128

Figure 37: Mauve visualization of an alignment of four E. 
oli and Shigella genomes, oneSalmonella, two Yersinia, and two Erwinia genomes. The alignment 
ontains 346 lo
ally
ollinear blo
ks and numerous lineage-spe
i�
 segments. Ea
h lineage has undergonesubstantial genomi
 rearrangement, resulting in the s
rambled synteny portrait shownhere.



129Clustering of variable segmentsOf the 31197 total segments, only 2810 are 
onserved among all taxa. If all di�eren
es ingene 
ontent arose from a single deletion or insertion event at a unique lo
us, the 2810segments 
onserved among all taxa 
ould a

ommodate a maximum of 2811 gene �uxevents, regardless of the phylogeneti
 relationship among taxa. Given that number ofsegments 
onserved among subsets of the taxa (31197-2810=28387) is mu
h larger than2810, it stands to reason that multiple events frequently o

ur at the same site and that�hotspots� of gene �ux must exist.A gene 
ontent phylogenyWe base our analysis on a genome-
ontent guide tree 
omputed by Progressive Mauve.The Progressive Mauve algorithm applies Neighbor-Joining to a distan
e matrix basedon a 
ombination of shared gene 
ontent and sequen
e identity. The resulting treeminimizes the total deviation between pairwise distan
es and bran
h lengths. We usethe genome-
ontent guide tree 
omputed by Mauve as a basis for our analysis of patternsof gene �ux. The inferred genome-
ontent guide tree may 
on�i
t with a phylogeny basedon nu
leotide substitution data and may also 
on�i
t with the true phylogeny. For ouranalysis of gene �ux, errors in phylogeneti
 inferen
e will likely 
ause our subsequentanalysis to underestimate the true number of gene �ux events, be
ause the tree is biasedtowards a topology that gives maximum 
onservation of gene 
ontent. Thus, we 
onsiderour estimates of gene �ux to be 
onservative.
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Yersinia pestis KIM

Yersinia pseudotuberculosis IP32953
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Core/Pan genome size in MbpFigure 38: The pan-genome and 
ore-genomes of 
lades within the family Enteroba
te-ria
ae. A genome-
ontent phylogeny and multiple genome alignment was 
onstru
tedfor nine enteri
 ba
teria using Progressive Mauve. The tree has been midpoint-rootedpla
ing Yersinia as an outgroup here. The 
ore genome size given at internal nodesrepresents the average amount of genome sequen
e 
onserved among all taxa below thatnode. The pan genome size represents the total amount of unique sequen
e present inall taxa below a given node. Homologous sequen
e present in two or more genomes gets
ounted only on
e towards the total pan-genome size.8.1.1 The enteri
 
ore genomeArmed with a gene-
ontent phylogeny, we 
onsider the portion of the genome 
onservedamong all members of a given 
lade to be the �
ore-genome� for that 
lade (Wertz et al.,2003). We de�ne the 
omplementary notion of a �pan-genome� as genome sequen
epresent in any one or more members of the 
lade (Tettelin et al., 2005). The genome-
ontent phylogeny for the nine enteri
 ba
teria and the 
orresponding 
ore- and pan-genome size for ea
h 
lade is shown in Figure 38.We analyze the fun
tional distribution of genes present in the enteri
 
ore genome.Of the 4307 annotated CDS in E. 
oli K12, 29.6% of them have at least some portion
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onserved among all nine enteri
 genomes. Genes in E. 
oli K12 have been annotatedwith a gene fun
tion ontology 
alled Multi-Fun, whi
h was designed to spe
i�
ally 
ap-ture biologi
al aspe
ts of enteri
 ba
teria (Serres and Riley, 2000). As E. 
oli K12 isthe only genome with a robust Multi-Fun annotation, we restri
t our analysis to 
lades
ontaining K12. We label 
lades as "A", "B", "C", and "D", from most diverse tomost spe
i�
 as shown in Figure 38. Multi-Fun 
ategories found to be under- and over-represented among genes in the 
ore genome are shown in Table 9. We report the per
entof 
onserved genes in ea
h fun
tional 
ategory, along with a χ2 goodness-of-�t statisti
for ea
h 
ategory. We do not report p-values be
ause a single gene may be assigned toseveral Multi-Fun 
ategories, thus dependen
ies exist among 
ategories.As we would expe
t, several fun
tional 
ategories are heavily overrepresented among
onserved genes. Spe
i�
ally, genes with produ
ts involved in ribosomal stru
ture, pro-tein information transfer, 
ell division, and some aspe
ts of metabolism show strong
onservation. Some fun
tional 
ategories show signi�
ant under
onservation, most no-tably gene produ
ts lo
alized to the outer membrane, 
arbon utilization gene produ
ts,and ele
tro
hemi
al-driven transporter gene produ
ts.We pro
eeded to 
ompare the fun
tional distributions of genes 
onserved at ea
h su
-
essive sub
lade that in
ludes E. 
oli K12, i.e. Clades "B", "C", and "D". Di�eren
es in
onserved fun
tional 
ategories are indi
ated by the two leftmost 
olumns in Tables 9, 10,and 11. Interestingly, outer membrane proteins are signi�
antly under-
onserved onlyat 
lades in
luding the Yersinia genus, and 
arbon utilization gene produ
ts are under-
onserved only when the Erwinia genus is in
luded.
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U D NumGenes GenesInCat Per
ent χ2 MfunLevel2Name1 43 2.33 10.8 
ell stru
ture; pilus"17 245 6.94 42.6 extra
hromosomal; prophage genesand phage related fun
tions""29 200 14.5 15.5 transport; Ele
tro
hemi
alpotential driven transporterss* 11 75 14.7 5.67 lo
ation of gene produ
ts;outer membrane"236 1240 19 47 Unknown; No MultiFun Tag80 405 19.8 13.3 metabolism; 
arbon utilization121 285 42.5 15.8 metabolism; energy metabolism, 
arbon49 103 47.6 11.2 metabolism; ma
romole
ule degradation123 255 48.2 29.8 transport; Primary A
tive Transporterss77 155 49.7 21 information transfer; DNA related437 828 52.8 150 lo
ation of gene produ
ts; 
ytoplasm"33 57 57.9 15.4 
ell stru
ture; peptidogly
an (murein)"265 442 60 137 metabolism; building blo
k biosynthesiss219 359 61 119 information transfer; protein related45 67 67.2 31.8 
ell pro
esses; 
ell division"59 68 86.8 74.9 
ell stru
ture; ribosome"Table 9: Annotated fun
tions for produ
ts of genes that have some portion 
onservedamong all nine enteri
 genomes. 29% of all genes annotated in E. 
oli K12 show eviden
efor 
onservation. Fun
tional 
ategories with a χ2 value less than 5 not shown. Anasterisk(*) in 
olumns U and D indi
ates that the fun
tional 
ategory appears di�erentlyat 
lades above (U) and below (D) this 
lade in the phylogeny.
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U D NumGenes GenesInCat Per
ent χ2 MfunLevel2Name21 245 8.57 59.8 extra
hromosomal; prophage genesand phage related fun
tions""6 43 14 7.18 
ell stru
ture; pilus"* 54 200 27 8.14 transport; Ele
tro
hemi
alpotential driven transporterss339 1240 27.3 47.8 Unknown; No MultiFun Tag* 118 405 29.1 11.4 metabolism; 
arbon utilization* * 182 367 49.6 9.02 metabolism; 
entral intermediary metabolismm* 140 255 54.9 14.8 transport; Primary A
tive Transporterss* 141 253 55.7 16.3 metabolism; ma
romole
ules(
ellular 
onstituent)biosynthesiss160 285 56.1 19.4 metabolism; energy metabolism, 
arbon97 155 62.6 20.4 information transfer; DNA related531 828 64.1 124 lo
ation of gene produ
ts; 
ytoplasm"67 103 65 16.6 metabolism; ma
romole
ule degradation246 359 68.5 75 information transfer; protein related336 442 76 147 metabolism; building blo
k biosynthesiss* 44 57 77.2 20.2 
ell stru
ture; peptidogly
an (murein)"54 67 80.6 28.2 
ell pro
esses; 
ell division"62 68 91.2 45.4 
ell stru
ture; ribosome"Table 10: 39.7% of K12 genes are 
onserved among members of 
lade "B". Fun
tional
ategories with a χ2 value less than 5 not shown. An asterisk(*) in 
olumns U and Dindi
ates that the fun
tional 
ategory appears di�erently at 
lades above (U) and below(D) this 
lade in the phylogeny.
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U D NumGenes GenesInCat Per
ent χ2 MfunLevel2Name* 1 65 1.54 41.9 extra
hromosomal; transposon related"31 245 12.7 109 extra
hromosomal; prophage genesand phage related fun
tions""* 15 43 34.9 6.77 
ell stru
ture; pilus"* 717 1240 57.8 17.2 Unknown; No MultiFun Tag* 130 155 83.9 6.17 information transfer; DNA related710 828 85.7 40.9 lo
ation of gene produ
ts; 
ytoplasm"* 89 103 86.4 5.46 metabolism; ma
romole
ule degradation255 285 89.5 20.4 metabolism; energy metabolism, 
arbon322 359 89.7 26.2 information transfer; protein related227 253 89.7 18.5 metabolism; ma
romole
ules(
ellular 
onstituent)biosynthesiss* 62 67 92.5 6.23 
ell pro
esses; 
ell division"413 442 93.4 44.1 metabolism; building blo
k biosynthesiss* 66 68 97.1 8.81 
ell stru
ture; ribosome"Table 11: 67.5% of K12 genes show eviden
e for 
onservation among members of 
lade"C". Fun
tional 
ategories with a χ2 value less than 5 not shown. An asterisk(*) in
olumns U and D indi
ates that the fun
tional 
ategory appears di�erently at 
ladesabove (U) and below (D) this 
lade in the phylogeny.



1358.1.2 Variable genes, deletion, and lateral transferA number of segments are 
onserved among subsets of the genomes under study. Wehave analyzed these segments with an eye towards genes that have undergone lineage-spe
i�
 deletion or apparent lateral transfer. Given an internal tree node at whi
h both
hild nodes are also internal nodes, we de�ne the notion of a Hop 2 segment as a regionwhi
h is present in some taxa below both 
hild nodes, but not present in all taxa beloweither 
hild. For example, a Hop 2 at the root of our tree is a segment present in onlyone of the two Yersinia, and also present in at least one member of 
lade "B", but not allmembers of 
lade "B". A Hop 2 pattern 
an only be explained by multiple independentdeletions of the same segment or lateral gene transfer. Similarly, we de�ne a Hop 1segment at an internal node as a region whi
h is present in all of one 
hild's taxa, andpresent in some, but not all, of the other 
hild's taxa. An example at the root nodewould be a segment missing from one of the two Yersinia but universally present in allof Erwinia, Salmonella, Shigella, and E. 
oli.We analyze the presen
e of Hop 1 and Hop 2 segments among members of Clades "A"and "B". Clade "A" shows eviden
e for 1138 Hop 1 segments, totalling 216Kbp, and 64Hop 2 segments, totalling 9.9Kbp. The Hop 2 segments are 
andidates for lateral transferbetween the Yersinia genus and members of Clade "B". Narrowing our phylogeneti
s
ope to Clade "B", we �nd eviden
e for 1182 Hop 1 segments totalling 140Kbp. Thereare 238 Hop 2 segments at this 
lade, totalling 30.3Kbp.Analysis of gene fun
tions requires that the gene be present in K12. With thatin mind, we analyzed the fun
tional distribution of Hop segments in Clades "A" and"B". At Clade "A", 4.99% of K12 genes have some portion 
ontained in a Hop 1segment. Two fun
tional 
ategories show signi�
ant overrepresentation: "transport;



136NumGenes GenesInCat Per
ent χ2 MfunLevel2Name2 245 0.816 16.8 extra
hromosomal; prophage genesand phage related fun
tions""80 1240 6.45 5.64 Unknown; No MultiFun Tag82 700 11.7 9.11 
ell stru
ture; membrane"66 555 11.9 8.02 lo
ation of gene produ
ts; inner membrane"42 285 14.7 13.6 metabolism; energy metabolism, 
arbon24 155 15.5 9.23 information transfer; DNA related12 67 17.9 7.2 
ell pro
esses; 
ell division"12 66 18.2 7.5 
ell stru
ture; surfa
e antigens(ECA, O antigen of LPS)""16 84 19 11.3 metabolism; metabolism of other 
ompounds49 253 19.4 36.2 metabolism; ma
romole
ules(
ellular 
onstituent)biosynthesissTable 12: Fun
tional 
ategories of genes in K12 that show eviden
e for lineage-spe
i�
loss (Hop 1) among members of Clade "B". Several 
ategories appear prone to lineage-spe
i�
 loss. Fun
tional 
ategories with a χ2 value less than 5 not shown.Primary A
tive Transporters" and "lo
ation of gene produ
ts; periplasmi
 spa
e" with8.24% and 10.4% 
ontaining Hop 1 segments, respe
tively. Only 0.25% of K12 genes arepart of Hop 2 segments at Clade "A", and no 
ategories are signi�
antly overrepresented.Among members of Clade "B", 8.41% of K12 genes parti
ipate in a Hop 1 segment.Several fun
tional 
ategories show signi�
ant overrepresentation in Hop 1 segments atClade "B", and are listed in Table 12. Some overrepresented 
ategories make intuitivesense for pathogeni
 ba
teria, for example, membrane proteins and surfa
e antigens.Other fun
tional 
ategories su
h as DNA related information transfer show an unex-pe
ted tenden
y towards lineage-spe
i�
 deletion. Only 0.88% of K12 genes parti
ipatein Hop 2 segments, and no fun
tional 
ategories show signi�
ant overrepresentation.Choi
e of taxa is an important 
onsideration for our analysis of Hop segments. Be-
ause Hop 2 segments 
an only be dete
ted when both sub
lades below an internal nodehave at least two or more member genomes, our method 
annot dete
t su
h segments



137at Clades "C" and "D". Adding another Salmonella genome and the E. 
oli UTI89genome would enable dete
tion of Hop 2 segments at "C" and "D". Moreover, sam-pling additional taxa at any 
lade would give more information about patterns of gene
onservation both within and a
ross 
lades.Genes unique to E. 
oliWe 
ontinued by asking, �What, if any, genes tend to be spe
i�
 to the E. 
oli?� Weidenti�ed all genomi
 segments that showed homology only among members of 
lade "D",and analyzed their fun
tional distribution. The results, shown in Table 13, indi
atethat very few fun
tional 
ategories are signi�
antly unique to E. 
oli, while a largenumber are signi�
antly non-unique. Interestingly, genes of unknown fun
tion are theonly 
ategory apart from re
ombination-prone 
ategories su
h as pili and transposonsthat show signi�
ant bias towards uniqueness in E. 
oli. Thus, we 
on
lude that �Wedon't (yet) know what makes an E. 
oli an E. 
oli.�8.1.3 An analysis of twelve E. 
oli and ShigellaHaving examined the gross 
hanges in geneti
 
ontent that exist among members ofthe Enteroba
teria
ae, we now turn towards a detailed analysis of E. 
oli and Shigellaisolates. Although we �nd few fun
tional gene 
ategories that distinguish E. 
oli andShigella from the remaining enteri
 ba
teria, these mi
robes harbor a wealth of geneti
diversity within their population that may be exploited to better understand their evo-lution.We again apply the Progressive Mauve alignment system to align the twelve genomeslisted in Table 8. The resulting alignment 
ontains 345 Lo
ally Collinear Blo
ks. There
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NumGenes GenesInCat Per
ent χ2 MfunLevel2Name2 68 2.94 17.9 
ell stru
ture; ribosome"3 57 5.26 12.7 
ell stru
ture; peptidogly
an (murein)"40 359 11.1 48.5 information transfer; protein related8 67 11.9 8.37 
ell pro
esses; 
ell division"54 442 12.2 53.7 metabolism; building blo
k biosynthesiss32 253 12.6 29.4 metabolism; ma
romole
ules(
ellular 
onstituent)biosynthesiss110 828 13.3 90 lo
ation of gene produ
ts; 
ytoplasm"38 285 13.3 30.8 metabolism; energy metabolism, 
arbon16 103 15.5 8.66 metabolism; ma
romole
ule degradation16 97 16.5 7.22 metabolism; energy produ
tion/transport65 367 17.7 23.2 metabolism; 
entral intermediary metabolism16 90 17.8 5.63 transport; Transporters ofUnknown Classi�
ationn22 123 17.9 7.58 
ell pro
esses; adaptation to stress29 155 18.7 8.46 information transfer; DNA related23 115 20 5.11 
ell pro
esses; prote
tion54 255 21.2 9.21 transport; Primary A
tive Transporterss81 336 24.1 6.41 information transfer; RNA related134 555 24.1 10.5 lo
ation of gene produ
ts; inner membrane"113 459 24.6 7.65 transport; substrate175 700 25 10.5 
ell stru
ture; membrane"475 1240 38.3 15.9 Unknown; No MultiFun Tag25 43 58.1 9.27 
ell stru
ture; pilus"197 245 80.4 181 extra
hromosomal; prophage genesand phage related fun
tions""60 65 92.3 74.3 extra
hromosomal; transposon related"Table 13: The genes that make E. 
oli an E. 
oli. Genes that have at least one segmentpresent only in 
lade "D" (E. 
oli and Shigella) are identi�ed and listed by fun
tional
ategory. Fun
tional 
ategories with a χ2 value less than 5 not shown. What makesE. 
oli an E. 
oli? We don't know. K12 genes with unknown fun
tion are signi�
antlymore likely to be unique to E. 
oli.



139are 1166 segments 
onserved among all E. 
oli and Shigella along with 12950 othersegments present in some but not all genomes. On
e again, strong eviden
e exists thatthese mi
robes have �hotspots� of gene �ux.Progresive Mauve 
omputes a genome-
ontent guide tree for the twelve genomeswhi
h pla
es the E. 
oli and Shigella into separate 
lades (Figure 39). Studies of thephylogeneti
 signal in nu
leotide substitutions among these mi
robes has revealed thatthey have undergone substantial amounts of homologous re
ombination (See Chapter 7).Ea
h genome is a mosai
 of many phylogeneti
 histories and thus a single 'true' whole-genome phylogeny does not exist for these taxa.Fun
tional distribution of 
onserved and lineage-spe
i�
 
ontentWe analyzed the fun
tional distribution of genes in E. 
oli K12 that 
ontain at leastone segment 
onserved among all E. 
oli and Shigella. The results, shown in Table 14,indi
ate that a small number of fun
tional 
ategories show signi�
ant over- and under-
onservation.At the root of our genome 
ontent guide tree there are 727 Hop 1 segments withtotal length 340Kbp, and 1451 Hop 2 segments with total length 522Kbp. Given thatE. 
oli and Shigella are one and the same spe
ies and undergo frequent homologousre
ombination (see Chapter 7), the relatively large number of Hop 2 segments relativeto Hop 1 is not surprising. These segments likely result from lateral geneti
 transfer, al-though multiple independent deletion events may play a role in some 
ases. The numberof Hop 2 segments 
an not be used to dire
tly estimate the number of re
ombinationevents that have taken pla
e, as multiple Hop 2 segments that support the same par-titioning of taxa may be 
olo
ated on the 
hromosome and giving eviden
e for only a
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E. coli K12 MG1655

E. coli O157:H7 EDL933

S. flexneri 2A 2457t

E. coli CFT073

S. flexneri 2A 301

E. coli UTI89

E. coli HS

E. coli E24377A

E. coli O157:H7 RIMD

S. boydii 227

S. dysenteriae 197

S. sonnei 046

2.98/12.0

3.68/8.55

4.13/5.63

4.21/5.05

3.97/7.32

5.48/5.74

4.66/5.74

3.24/7.67

3.31/6.81

3.76/5.95

4.74/5.10

0.1 Core/Pan genome size in MbpFigure 39: The pan-genome and 
ore-genomes of E. 
oli and Shigella. A genome-
ontent phylogeny and multiple genome alignment was 
onstru
ted for twelve genomesusing Progressive Mauve. A midpoint-root has been pla
ed on the bran
h 
onne
ting E.
oli and Shigella. The twelve mi
robes studied here are 
ommonly 
onsidered to be thesame spe
ies, yet harbor a tremendous amount of geneti
 diversity. Ea
h mi
robe hasan average genome size of 5Mbp, but on average 
ontains only 3Mbp whi
h is 
onservedamong all taxa shown here. The pan-genome size of 12Mbp re�e
ts all unique geneti

ontent in these taxa, whi
h averages to 750Kbp per sequen
ed genome.



141NumGenes GenesInCat Per
ent χ2 MfunLevel2Name3 65 4.62 38.8 extra
hromosomal; transposon related"28 245 11.4 117 extra
hromosomal; prophage genesand phage related fun
tions""15 43 34.9 7.13 
ell stru
ture; pilus"677 828 81.8 20.8 lo
ation of gene produ
ts; 
ytoplasm"213 255 83.5 8.25 transport; Primary A
tive Transporterss130 155 83.9 5.25 information transfer; DNA related248 285 87 14 metabolism; energy metabolism, 
arbon62 67 92.5 5.58 
ell pro
esses; 
ell division"410 442 92.8 37.5 metabolism; building blo
k biosynthesissTable 14: Fun
tional distribution of genes showing 
onservation among all E. 
oli andShigella. 68.6% of genes in E. 
oli K12 show eviden
e for 
onservation. Fun
tional
ategories with a χ2 value less than 5 not shown. Interestingly, both DNA InformationTransfer and Building Blo
k Biosynthesis 
ategories show signi�
antly above average
onservation. These two fun
tional 
ategories were previously identi�ed as espe
iallyprone to homologous re
ombination.single re
ombination event.Although only a small number of fun
tional 
ategories show unusual patterns of 
on-servation, several fun
tional 
ategories show eviden
e for interesting patterns of geneloss and potential lateral transfer. A total of 10.9% of E. 
oli K12 genes 
ontain Hop 1segments, with the fun
tional 
ategories: "Unknown", "transport; Ele
tro
hemi
al po-tential driven transporters", and "metabolism; metabolism of other 
ompounds" showingover-representation. 8.66% of E. 
oli K12 genes parti
ipate in Hop 2 segments at theroot node, and the fun
tional distribution is shown in Table 15.Substantial intergeni
 variabilityWhen gene �ux o

urs inside a pre-existing gene, it very likely breaks the gene. Weevaluated the frequen
y with whi
h gene �ux o

urs within annotated genes, versusentirely intergeni
 regions. To do so, we de�ne a variable site in E. 
oli and Shigella as



142NumGenes GenesInCat Per
ent χ2 MfunLevel2Name138 1240 11.1 8.71 Unknown; No MultiFun Tag15 75 20 11.1 lo
ation of gene produ
ts; outer membrane"14 66 21.2 12 
ell stru
ture; surfa
e antigens(ECA, O antigen of LPS)""Table 15: Fun
tional 
ategories that are overrepresented in Hop 2 segments between E.
oli and Shigella. 8.66% of genes in E. 
oli K12 parti
ipate in Hop 2 segments at thisnode. Fun
tional 
ategories with a χ2 value less than 5 not shown.any site between two adja
ent segments 
onserved among all taxa (universally 
onservedsegments). To avoid trivial variable sites due to small indels and slightly mispredi
tedhomology boundaries, we 
onsider only variable sites longer than 15nt. Given these
riteria, there are 809 variable sites between universally 
onserved segments. Of these,23 lie entirely within the boundaries of a single annotated gene and are likely multi-alleli
genes or misannotated pseudogenes (a detailed inspe
tion reveals both 
ases). A further260 of the 809 variable sites have endpoints 
ompletely outside annotated CDS in alltwelve genomes. 174 of the 260 variable segments with intergeni
 endpoints 
ontain CDS,implying that novel genes have been either gained or lost at these sites. Finally 86 of the260 intergeni
 variable segments 
ontain no annotated CDS, implying that substantialvariability exists in wholly-intergeni
 regions. Given that the vast majority of an enteri
genome 
odes for protein, our observation that 260 of 809 variable segments (32%) haveendpoints outside annotated gene boundaries supports the notion that a strong sele
tivebias exists against gene �ux that breaks genes.Using the E. 
oli K12 annotation as a referen
e, we examined the 
hara
teristi
sof variable intergeni
 segments. Genes in enteri
 ba
teria are frequently trans
ribedtogether in operons. Genes that are 
o-expressed in operons always o

ur adja
ent toea
h other and are trans
ribed from the same strand. We 
lassify neighboring genes as



143either 
onverging, where the 3' end of both genes are adja
ent, diverging, where the 5'end of both genes are adja
ent, or inline, where the genes are adja
ent and on the samestrand.Of the 260 intergeni
 variable sites, we �nd that 96 are �anked by 
onverging CDS,39 are �anked by diverging CDS, and 125 are �anked by inline CDS. To determinewhether su
h a pattern would be observed merely by 
han
e, we 
ounted all intergeni
sites with non-overlapping genes and performed a χ2 test. There are 549 
onverging,629 diverging, and 2549 inline CDS pairs in E. 
oli K12 that do not overlap, for atotal of 3727 non-overlapping CDS pairs. We observe a signi�
ant overrepresentation ofvariable segments in 
onverging regions (χ2 = 89.17, p =, 2 d.f.), the number of variablesegments in diverging region does not signi�
antly deviate from expe
tation, and we seea signi�
ant under-representation of variable segments between inline CDS (χ2 = 14.72,
p = , 2 d.f.).The high number of variable sites at 
onverging CDS relative to diverging CDS is apattern that would be expe
ted if mutations at 
onverging regions were less detrimentalto the organism than mutations at diverging regions. In 
ases where new genes werenot gained or lost, our observations of intergeni
 variability at inline CDS 
ould be anartifa
t of subtle tuning of the mi
robes regulatory program by forming or destroyingoperon stru
tures. In 
ases where genes have been a
quired, they may be in
orporatinginto existing operon stru
ture.Variability around tRNA and small regulatory RNAsWe examined the propensity of variable segments to 
luster in the neighborhoods oftRNA and small non-
oding RNAs annotated as mis
_RNA in the E. 
oli K12 genome.



144There are 49 annotated mis
_RNA features in E. 
oli K12. Of our 260 variable inter-geni
 segments, 16 of them either 
ontain (7) or immediately neighbor (9) a mis
_RNAfeature. We �nd mu
h greater variability in the neighborhood of mis
_RNA than wouldbe expe
ted by 
han
e alone (χ2 = 50.44, p ≤ 0.001, 1 d.f.). tRNA are well known tobe asso
iated with so-
alled Genomi
 Islands of variability (Ha
ker and Kaper, 2000).There are 88 annotated tRNA in E. 
oli K12. We �nd 20 variable segments that eitherimmediately neighbor (3), or 
ontain (17) tRNA features. As expe
ted, tRNA are asso-
iated with variable segments to a greater degree than 
han
e would di
tate (χ2 = 34.78,
p ≤ 0.001, 1 d.f.).AlternalogsWhen a variable site has undergone a single insertion or deletion event it partitions thetaxa into two groups: those with a �null� allele and those with either novel 
ontent orthe an
estral 
ontent. If multiple insertion or deletion events o

ur at the same site, wemay see a pattern where ea
h genome has an alternate non-null allele at a the variablesite. We refer to su
h variable sites whi
h have at least two di�erent non-null alleles asalternalogs.Of the 809 total variable sites, 285 of these �t our de�nition of an alternalog. Seven ofthese are 
ompletely 
ontained within annotated gene boundaries in all twelve genomesand are likely multi-alleli
 genes. 97 alternalog sites have intergeni
 endpoints, of whi
h21 
ontain no annotated CDS internally implying they are entirely intergeni
 alternalogs.The remaining alternalog sites span gene boundaries, but are not entirely 
ontainedin any gene. A small number of alternalogs neighbor or 
ontain mis
_RNA featuresin E. 
oli K12, however the distribution is not as skewed as when all variable sites



145are 
onsidered. There are 14 alternalog sites that either neighbor (1) or 
ontain (13)tRNA annotated in K12, a signi�
ant deviation from what would be expe
ted by 
han
e(χ2 = 45.27, p ≤ 0.001, df=1).Figure 40 illustrates a series of genes related to �mbriae and pilus produ
tion wheremultiple gene �ux events have 
ollo
ated. The resulting genomi
 stru
ture is a pat
hworkwith many genes di�erentially lost or gained in ea
h genome.8.2 Dis
ussionWe have demonstrated that populations of enteri
 ba
teria harbor a wealth of geneti
diversity. Any E. 
oli isolate is likely to have between 10% and 20% sequen
e 
ontent notobserved in other E. 
oli isolate. As we 
onsider a progressively broader taxonomi
 s
opein our analysis, the total amount of 
ore genome 
ontent de
reases, eventually rea
hingapproximately 1Mbp. Given the extreme amount of diversity within the E. 
oli andShigella, it is 
lear that portions of the 
ore-genome are resistant to gene �ux, otherwiseno 
onserved sequen
e would remain over the long period of divergen
e between theenteri
 spe
ies we study here. Thus, it appears that novel 
ontent is usually transient,but o

asionally be
omes �xed in the population through positive sele
tion.In some 
ases, newly a
quired 
ontent may appear to repla
e 
ontent that previouslyexisted at a given lo
us. The novel 
ontent may initially �infe
t� the �rst member of thepopulation through simple insertion, and subsequent deletion of adja
ent 
ontent wouldyield an apparent repla
ement, or alternalog. If the novel 
ontent is advantageous,population members with the repla
ement may experien
e positive sele
tion. Previousstudies suggest that the population size of E. 
oli may be very large (Berg, 1996). If
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Figure 40: Mauve visualization of the mosai
 stru
ture of the yf
OPQRSTUV gene
luster and neighboring regions. The yf
 gene produ
ts have �mbrial and pilus-relatedfun
tions. Regions 
onserved among all nine taxa are shown in pink, and the height ofthe pink similarity plot indi
ates the degree of 
onservation for su
h regions. Segments
onserved among only the Yersiniae are shown in yellow, while other 
olors representregions 
onserved among di�erent subsets of the taxa. The white re
tangular blo
ksindi
ate the lo
ations of annotated genes. The yf
 gene 
luster is present only in the E.
oli and Shigella. The yf
O gene appears to have three di�erent alleles, one shown asgreen in the third and �fth genomes (O157 and Shigella) , the other two alleles shownas white in the �rst and se
ond genomes (K12 and CFT073).



147mi
robial population sizes are indeed large, we would expe
t geneti
 drift to �x neutrala
quisitions or deletions at a very low rate. In su
h a s
enario we expe
t the sameneutral a
quisition or deletion to be observed in more than one independently sampledmember of the population very rarely unless the mutation o

urred a �long� time ago.If mi
robes have very high re
ombination rates, however, the pro
ess of geneti
 drift
ould be substantially a

elerated (Novozhilov et al., 2005), and re
ent a
quisitions
ould rapidly �invade� the population even if they are neutral or mildly deleterious.Unlike sexual organisms, intraspe
i�
 re
ombination in mi
robes is not tied to generationtime, but rather appears to be episodi
 (REEVES, 1960). Without an upper bound onre
ombination rate, it may prove di�
ult to distinguish alleles whose frequen
y in thepopulation has re
ently in
reased due to geneti
 drift from those under strong positivesele
tion.It may be possible to estimate the overall re
ombination rate in mi
robes by in-vestigating patterns of shared novel 
ontent and deletion mutations in 
onjun
tion withnu
leotide substitution data. Given baseline estimates of re
ombination rates along with(unrealisti
) assumptions that the re
ombination rate is 
onstant over time and that allportions of the 
hromosome are uniformly subje
t to re
ombination, it be
omes possibleto identify novel a
quisitions and deletions that have been subje
t to positive sele
tion.Detailed knowledge of the sele
tive for
es at play during the pro
ess of gene �ux wouldbe a great boon to the �eld of mi
robial population geneti
s and our understanding ofnature as a whole.Finally, we have identi�ed signi�
ant amounts of gene �ux in entirely intergeni
segments, and dis
overed an unexpe
ted 
orrelation between gene �ux and annotatedmis
_RNA features. mis
_RNA features are typi
ally small non-
oding RNAs that play



148a role in gene regulation. Although it has been previously known that small RNAs arerarely 
onserved a
ross spe
ies, the extent of their diversity within spe
ies was heretoforeunappre
iated. Further study will undoubtedly shed light on the role gene �ux plays inthe evolution of gene regulation in enteri
 ba
teria.



149Chapter 9
Bayesian models of genome evolution
9.1 Ba
kgroundCurrent genome alignment systems make several simplifying assumptions that limit theirvalue for 
hara
terizing rates and patterns of large-s
ale evolution. Genome aligners typi-
ally report the single highest s
oring genome alignment a

ording to their s
oring metri
without 
onsidering un
ertainty in the best-s
oring alignment. Un
ertainty in the align-ment a�e
ts every aspe
t of downstream analysis of the alignment, from phylogeneti
shadowing for fun
tional inferen
e, to investigation of the breakpoints of re
ombination.Clearly, un
ertainty should be 
onsidered if at all possible.Assessing un
ertainty in genome alignments requires a more statisti
ally rigoroustreatment of genome alignment than that used by state-of-the-art genome alignmentmethods. Previous studies of un
ertainty in gapped alignments indi
ate that analyti
al
al
ulation of alignment probability is far too expensive even for short alignments of fewtaxa with simple evolutionary models (Miklòs et al., 2004). For this reason, BayesianMCMC methods must be employed. Their slow adoption has been in part due to the
omplexity of implementation and in part due to the the 
omputational 
ost of samplingmany alignments versus 
al
ulating a single highest-s
oring alignment. However, re
entadvan
es in Bayesian alignment sampling have demonstrated its feasibility for short



150sequen
es (Lunter et al., 2005, Redelings and Su
hard, 2005, Su
hard and Redelings,2006, Fleissner et al., 2005).We presently des
ribe a Bayesian model of genome evolution that 
an be appliedfor analysis of mi
robial genomes. The model has not been implemented, however, wedis
uss pra
ti
al 
onsiderations for its implementation.9.2 A model of genome evolutionThe �rst step towards development of a statisti
al method for genome alignment is theelu
idation of a sto
hasti
 model of evolution whi
h 
aptures the most important aspe
tsof genome evolution. A tradeo� exists in model 
omplexity, as in
reasingly 
omplexmodels promise to provide more a

urate des
riptions of the evolutionary pro
ess, but
ome at the 
ost of requiring in
reasingly large amounts of data for a

urate modelparameterization and greater 
omputational e�ort for inferen
e. Keeping that tradeo�in mind, I propose a simplisti
 model of genome evolution that in
orporates several ofthe major evolutionary for
es we have observed to a�e
t enteri
 ba
teria.At a bare minimum, a probabilisti
 model of genome evolution must in
orporate thefollowing mutation operators: nu
leotide substitution, insertion and deletion of arbitrar-ily sized segments, and rearrangement by inversion. To maintain model simpli
ity, wedo not in
orporate rearrangement by transposition or dupli
ation/loss pro
esses, as aseries of overlapping inversion events 
ould produ
e similar genome arrangements, albeitwith additional rearrangement events. A
quisition and loss of entire genes and operons
an be modeled by the indel pro
ess with arbitrarily long segments. The model assumesa phylogeneti
 tree relating the genome sequen
es, with bran
h lengths that represent



151divergen
e times. Our previous observation of signi�
ant heterota
hy in mutation ratesfor genome rearrangement and gene �ux suggests that ea
h mutation type should haveper-bran
h rates. A full list of model parameters is given in Table 16.The proposed model 
an be viewed as a merge and extension of two previously de-s
ribed sto
hasti
 models of evolution. We in
orporate the long-indel model of sequen
eevolution used by Bali-Phy (Redelings and Su
hard, 2005), extending the model slightlyto separate bran
h-lengths from mutation rates and allowing indel rates to be indepen-dent of substitution rates. We then in
orporate the model of genome rearrangementby inversion des
ribed by Larget et al. (2004), also allowing inversion events to havebran
h-spe
i�
 rates.9.2.1 NotationMultiple sequen
e alignments are typi
ally displayed in row-
olumn format with gap
hara
ters spa
ing the sequen
es su
h that homologous regions align in 
olumns. Therow-
olumn format mutliple alignment is impre
ise, however, be
ause more than onerow-
olumn alignment 
an en
ode identi
al homology information, di�ering only in thepla
ement of gap 
hara
ters. We adopt a homology stru
ture based on a partial ordergraph, whi
h yields an unambiguous means to re
ord homology infomation (Lee et al.,2002). A genome alignment 
onsists of several homology stru
tures�one for ea
h Lo
allyCollinear Blo
k (LCB)�the set of whi
h are denoted H. In the proposed model the setof LCBs is denoted by Y. To simplify 
al
ulation ea
h LCB is de�ned as an intervalof at least one nu
leotide present in all of the k genomes under study. Thus, a givenLCB Yi 
an be parameterized by its left and right-end 
oordinates in ea
h genome:
Yi = {〈Yi.left1, Yi.right1〉, . . . , 〈Yi.leftk, Yi.rightk〉}. All or part of the region 
overed
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param Parameter Des
ription prior

G Observed set of genome sequen
es �xed
Ψ Tree topology with k leaves uniform
τ A ve
tor of bran
h lengths for Ψ τ ∼ Γ(τα, τλ)
τα Bran
h length gamma distribution hyperparameter �xed
τλ Bran
h length gamma distribution hyperparameter �xed
Nb Per-bran
h rates of nu
leotide substitution Nb ∼ Γ(Nα, Nλ)
Nα Substitution rate gamma distribution hyperparameter �xed
Nλ Substitution rate gamma distribution hyperparameter �xed
Q Substitution rate matrix �xed
α Gamma-distributed substitution rate heterogeneity shape parameter uniform
Dl Mean indel length uniform(0. . . 100)
Db Per-bran
h indel rates Db ∼ Γ(Dα,Dλ)
Dx Per-bran
h indel 
ounts Dx|Dbτb ∼ Poisson(Dbτb)
Dr Per-bran
h set of indel sites length(Dr) ∼ Geom(Dl)
Ds Per-bran
h set of indel event times uniform(0, τb)
Dα Indel rate gamma distribution hyperparameter �xed
Dλ Indel rate gamma distribution hyperparameter �xed
D The set of all indel variables, ex
luding Dα and Dλ

Ib Per-bran
h inversion rates Ib ∼ Γ(Iα, Iλ)
Ix Per-bran
h inversion 
ounts Ix|Ibτb ∼ Poisson(Ibτb)
Ir Per-bran
h set of inversion event breakpoints uniform(G)
Is Per-bran
h set of inversion event times uniform(0, τb)
Iα Inversion rate gamma distribution hyperparameter �xed
Iλ Inversion rate gamma distribution hyperparameter �xed
I The set of all inversion variables, ex
luding Iα and Iλ

Y The set of lo
ally 
ollinear blo
ks (nuisan
e parameter) uniform
H Set of per-LCB homology stru
tures uniformTable 16: Parameters for a Bayesian model of genome evolution.



153by the LCB 
an be homologous among the two sequen
es, as di
tated by a homologystru
ture Hi. In this model, every nu
leotide in every genome is part of some LCB.In addition to providing a framework for the homology stru
tures, the LCBs allowthe genome sequen
es to be redu
ed to signed permutations for rearrangement historyinferen
e.Given a set of genome sequen
es G = {g1, . . . , gk}, we denote the length of the ithgenome sequen
e as |gi|.9.3 The posterior distributionWe write the 
omplete set of model parameters as Θ = {Ψ, τ, Nb, α,D, I,Y,H}, andthe set of �xed data as Ω = {G, Nα, Nλ, Q,Dα, Dλ, Iα, Iλ}. The unnormalized jointposterior distribution of model parameters 
an be expressed as:
P (Θ|Ω) ∝ P (Ψ)P (Y)P (τ |τα, τλ)P (Nb|Nα, Nλ) ·

P (Db|Dα, Dλ)P (Dl)P (Dx|Dbτ)P (Dr|Dx, Dl)P (Ds|τ,Dx) ·

P (Ib|Iα, Iλ)P (Ix|Ibτ)P (Ir|Ix)P (Is|τ, Ix) ·

P (H|G, τ, Q,Nb)P (Y|I)P (H|D)P (G|HY)where
P (Ψ) =

1

(2k − 5)!!when k > 2 (more than two genomes). The number of possible LCB 
on�gurations,denoted Y# 
an be expressed as
Y# =

n
∑

i=1

(i!2i)k−1

k
∏

j=1

(

|gj| − 1

i− 1

) (9.1)



154where n is the length of the shortest genome. Thus, we 
an write P (Y) = 1
Y #

. Intu-itively, we 
an think of Y# as 
ounting all possible LCB stru
tures among the genomes.The sum term a

ounts for the fa
t that there are anywhere between 1 and n 
ollinearsegments in ea
h genome, and the se
ond (produ
t) term 
onsiders all possible ways the
ollinear segments 
ould be 
ombined a
ross genomes into LCBs.The 
onditional probabilities for I follow from (Larget et al., 2004). Brie�y, wede�ne a set of per-bran
h inversion rates Ib 
oming from a gamma distribution withshape parameter Iα and s
ale parameter Iλ. Ib is a ve
tor with 2k − 3 elements, thenumber of edges in the tree. We then de�ne a total per-bran
h 
ount of inversions Ixwhi
h is Poisson distributed with per-bran
h intensities equal to Ibτ , i.e. the produ
t ofinversion rate and bran
h time. We go on to de�ne Ir as the a
tual inversion events thattook pla
e along ea
h bran
h, and we de�ne a set of per-bran
h inversion event times
Is, whi
h are uniformly distributed along the bran
h (whi
h has Ix events and τ unitsof time).The 
onditional probabilities for D are similar to those for I, but in
lude some biastowards parti
ular indel sizes, whereas our prior on inversion events treats all events asequally likely. Again we de�ne Db as a per-bran
h mutation rate for indels, gamma-distributed with shape and s
ale Dα and Dλ, respe
tively. We sample a per-bran
h
ount of indel events, whi
h is Poisson distributed with per-bran
h intensities equal to
Dbτ . Dr represents the a
tual indel events taking pla
e along ea
h bran
h, and Dsare the 
orresponding event times uniformly distributed along the bran
h. The term
P (Dr|Dx, Dl) re�e
ts the probability of observing a series of Dx indel events given thatindel lengths are distributed a

ording to a geometri
 distribution with mean Dl. P (Dl)is the prior probability of a given mean indel length, whi
h we take to be uniformly



155distributed between 0 and 100.The term P (H|G, τ, Q,Nb) 
al
ulates the probability of the homology stru
ture giventhe genome sequen
es. The probability of the homology stru
ture depends on the prob-ability of the nu
leotide substitution events among members of G implied by the homol-ogy stru
ture. Substitution probabilities 
an be 
al
ulated using Felsenstein's peelingalgorithm (Felsenstein, 2004).The �nal three terms in the unnormalized posterior are indi
ator terms whose prob-ability is 1 if the proposed stru
tures are 
onsistent with the data. Spe
i�
ally, we writethese as:
P (Y|I) = 1{(Ψ,Ix,Ir)→֒Y}

P (H|D) =

|H|
∏

i=1

1{(Ψ,Dx,Dr)→֒Hi}

P (G|H,Y) = 1{(Y,H)→֒G}Where P (Y|I) indi
ates whether the proposed rearrangement events are 
onsistentwith the proposed LCB stru
ture Y. The term P (H|D) indi
ates whether the proposedindel events are 
onsistent with the proposed homology stru
ture. Finally, the term
P (G|H,Y) has value 1 when the genome sequen
e data is 
onsistent with the proposedhomology stru
ture and LCB stru
ture.Inferen
e under the modelThe marginal probability distribution of model variables provides a basis for biologi
alinsight. For example, a probability distribution over the breakpoints of rearrangementen
oded by Ir 
an identify likely positions on the 
hromosome where a rearrangement



156event was initiated. By studying the sequen
e motif at that site, it may be possible toinfer whether the rearrangement event was mediated by homologous re
ombination, anIS or transposable element, or illegitimate re
ombination. The probability distributionover homology stru
tures 
an inform us whi
h regions are likely to have been 
onservedthroughout evolution, and also pla
es a distribution over endpoints of gene a
quisitionand di�erential gene loss. We 
an then investigate the surrounding sequen
e for eviden
eof phage involvement or other re
ombination me
hanisms.9.3.1 Sampling from the modelDue to the 
omplexity of the model, dire
t analyti
al 
al
ulation of marginal probabilitiesfor ea
h variable is not possible. Instead, it will be ne
essary to sample likely values forea
h of the above listed variables using Markov-
hain Monte-Carlo. Towards this end,the sampling methodology and model for rearrangement events follows the lead of Largetet al. (2002) whereby inversions were spe
i�ed by an event 
ount per bran
h (Ix) withevent times given by a Poisson pro
ess (Is). At proposal steps requiring modi�
ation ofthe rearrangement s
enario, a method similar to Larget et al. (2004) would be used topropose a plausible rearrangement s
enario. Their method proposes an inversion thatredu
es the overall inversion distan
e with high probability, and with low probability,proposes inversions that either maintain the same inversion distan
e or in
rease thedistan
e. It is likely that use of a parallel Metropolis-
oupled sampling strategy wouldbe ne
essary to improve mixing speed.Given an alignment and a phylogeneti
 tree, it is possible to qui
kly 
al
ulate theminimum number of indel events that 
ould give rise to the observed alignment. Thusthe indel events 
an be parameterized in a manner similar to rearrangements, namely by



157having per-bran
h parameters for the a
tual series of events, their times, and an event
ount whose prior is biased by the minimum possible number of events. We 
an thensample indel events as rearrangements are sampled; spe
i�
ally, indels that redu
e thetotal number of remaining events required to explain the homology stru
ture are sampledwith high probability. Indels that leave the number of remaining events 
onstant aresampled with small probability while other indel events are sampled with an even smallerprobability.Be
ause genome sequen
es 
an be several megabases in length, the alignment sam-pling method must use an
hored alignment te
hniques. With some high probability,the sampler proposes a set of an
hors and LCBs (Y) 
onsistent with the high s
oringlo
al alignments. LCBs in
onsistent with the set of high s
oring lo
al alignments shouldbe proposed with lower probability. Among the high probability an
hor proposals, itmay be possible to bias the proposal distribution toward LCB 
on�gurations with fewerrearrangement breakpoints.Given a set of LCBs (Y) and alignment an
hors, an alignment 
an be proposed by
ombining the traditional dynami
 programming approa
h for an
hored alignment witha sto
hasti
 tra
eba
k step. In sto
hasti
 tra
eba
k, rather than sele
ting the highests
oring path at ea
h step of the tra
eba
k pro
edure, a path is 
hosen randomly withprobability proportional to its s
ore. Lunter et al. (2005) des
ribes how to 
al
ulate pro-posal probabilities for standard alignment, and we anti
ipate extending the methodologyto an
hored alignment. Bali-Phy uses a slightly di�erent me
hanism to propose newalignments among taxa whi
h appears to o�er better mixing (Redelings and Su
hard,2005). Thus, if their approa
h 
an be 
ombined with an an
horing strategy it may bepreferable.



158The MCMC sampler moves through a series of states X = x0,x1, . . . ,xn, ea
h ofwhi
h is represented by a parti
ular set of parameter values. Transitions between statesare a
hieved by a set of proposal update me
hansisms. The quality of proposal updatesis 
riti
al to a
hieving high a

eptan
e ratios and good mixing behavior for the Markov
hain. The sampler uses the following proposal update me
hanisms:1. Update tree topology (using me
hanisms su
h as NNI and TBR)2. Update a pair of breakpoint positions for a sequen
e subje
t to existing an
hor
onstraints (re
al
ulate alignment in new regions)3. Sample a new an
hor for a position in a sequen
e (update rearrangement s
enario)4. Disable an an
hor (possibly update rearrangement s
enario)5. Disable an entire LCB6. Sample a new rearrangement s
enario7. Sample a new indel s
enario8. Resample part of the alignmentThe �rst proposal me
hanism, an update to the tree topology, requires a 
orrespond-ing update of rearrangement s
enarios and indel events, although the homology stru
tureis invariant. The se
ond proposal me
hanism would require 
hanges to the homologystru
ture and possibly indel events, although the LCB stru
ture and rearrangementevents 
ould remain invariant. Finally, resampling the alignment would also require 
or-responding updates to the indel s
enarios. Future work to derive Metropolis-Hastings
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eptan
e ratios for ea
h proposal type will be required before any of these proposalme
hanisms 
an be implemented in software.9.4 Dis
ussionThe proposed model takes an intentionally simpli�ed view of the for
es at play duringgenome evolution. The model ignores rearrangement mediated by transposition, blo
kinter
hange, and dupli
ation-loss pro
esses. The model does not in
lude segmental du-pli
ation, whi
h we feel is an a

eptable simpli�
ation when modeling ba
terial genomesthat appear to have strong sele
tive pressure to maintain small genome size.Perhaps more importantly, the model does not in
lude any notion of lateral transferamong population members. Isolates of enteri
 ba
teria have provided strong eviden
efor homologous re
ombination's role in ex
hanging geneti
 material among members ofa population. When su
h re
ombination takes pla
e, a single tree topology no longerrepresents the true history of the genomes under study. Thus, the proposed model mayhave serious short
omings in its representation of population-level evolution. However,
ross-spe
ies re
ombination has been demonstrated to be mu
h rarer than intraspe
i�
re
ombination (Beiko et al., 2005, Mau et al., 2006). Therefore it seems plausible thatthe model 
ould be applied to a set of genomes so long as no two genomes are membersof the same spe
ies (i.e. little homologous re
ombination has taken pla
e).Although other work has used a single likelihood 
al
ulation for the probability ofa tree given both indels and nu
leotide substitutions in a TKF91 model, the method
an only a

omodate single nu
leotide indels. Be
ause larger indels obviously o

ur we
onsider our model more realisti
. Our more realisti
 model 
omes at the expense of



160sampling full indel histories for the genomes under study. It remains to be seen whetherthe approa
h is 
omputationally tra
table.



161Appendix A
Palindromi
 seed patterns
Weight Pattern Seed Rank by Sequen
e Identity65% 70% 75% 80% 85% 90%5 1**111**1 2 2 2 2 2 76 11**1*1**11 2 2 2 2 2 37 1*11***1***11*1 2 2 2 2 2 28 111**1*1**111 2 2 2 2 2 29 111**1**1**1**111 3 2 2 2 2 210 111*1**1**1**1*111 5 3 2 2 2 211 111*1*1**1**1*1*111 3 2 2 2 2 212 1111*1**11**1*1111 1 1 3 3 2 313 111*1*11**1**11*1*111 2 1 2 2 2 214 1111*1*11**11*1*1111 1 1 2 2 2 215 1111*11**1*1*1**11*1111 3 2 2 2 3 416 111*111**1*11*1**111*111 5 4 2 2 2 218 11111*1*11**11**11*1*11111 2 2 2 2 2 219 11111*1*11**111**11*1*11111 6 4 2 3 4 620 11111*11*111**111*11*11111 1 1 8 > 10 > 10 > 1021 111111**11*1*111*1*11**111111 > 10 3 2 1 1 1Table 17: Se
ond-most sensitive palindromi
 spa
ed seeds used by pro
rastAligner.The sensitivity ranking of a seed at various levels of sequen
e identity is given in the
olumns at right. A seed with rank 1 is the most sensitive seed pattern for a given weightand per
ent sequen
e identity. The default seeds used by pro
rastAligner are listedin Chapter 3, while these seeds are the se
ond-most sensitive set of optional seeds.
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Weight Pattern Seed Rank by Sequen
e Identity65% 70% 75% 80% 85% 90%5 11**1**11 3 3 3 3 3 26 11*1*1*11 3 3 3 3 3 17 11*1***1***1*11 3 3 3 3 3 38 11**1*1*1*1**11 4 4 3 4 4 49 111**1*1*1**111 2 3 3 3 3 310 111*1**11**1*111 2 2 3 3 3 311 111**1**1*1*1**1**111 9 6 3 3 3 312 111*11*1***1*11*111 3 2 2 2 3 613 111*1**11*1*11**1*111 5 3 4 3 4 614 1111*1*1**11**1*1*1111 4 4 3 3 4 515 1111**11*1*1*1*11**1111 5 3 3 3 2 216 11111**11*1*1*11**11111 4 3 4 3 3 418 1111*11**11*1*1*11**11*1111 > 10 6 3 3 3 319 1111*11*111*1*111*11*1111 1 1 4 10 > 10 > 1020 11111*1*111**11**111*1*11111 > 10 > 10 1 2 3 321 111111*1*11*111*11*1*111111 3 2 4 10 > 10 7Table 18: Third-most sensitive palindromi
 spa
ed seeds used by pro
rastAligner.The sensitivity ranking of a seed at various levels of sequen
e identity is given in the
olumns at right. A seed with rank 1 is the most sensitive seed pattern for a given weightand per
ent sequen
e identity. The default seeds used by pro
rastAligner are listedin Chapter 3, while these seeds are the third-most sensitive set of optional seeds.



163Appendix B
Des
ription of the Mauve Multi-MUMsear
h algorithm
The multi-MUM sear
h algorithm des
ribed herein is a seed-and-extend method basedon the method that 
an identify both multi-MUMs o

urring in all genomes under studyin addition to those o

urring only in subsets of the genomes being sear
hed. The multi-MUM sear
h algorithm has time 
omplexity O(G2n+Gn logGn) where G is again thenumber of genomes and n the length of the longest genome. Further, the random-a

ess memory requirements are proportional to the number of multi-MUMs found, not
n, allowing it to e�
iently ta
kle large data sets. O(Gn) disk spa
e is used to storesequentially a

essed data stru
tures.The algorithm pro
eeds by 
onstru
ting a sorted list of k-mers for ea
h genome g ∈ G.The sorted k-mer lists are then s
anned to identify kmers that o

ur in two or moresequen
es but that o

ur at most on
e in any sequen
e. If a multi-MUM that subsumesthe k-mer mat
h has not yet been dis
overed, then the mat
h seeds an extension in ea
hgenome until a mismat
h o

urs. When a mismat
h o

urs an extension is seeded in thesubset of sequen
es that are still identi
al, but only if a subsuming multi-MUM has notyet been dis
overed.Given a mat
h seed, a key feature of our algorithm is its ability to e�
iently determine



164whether an existing multi-MUM subsumes the seed. Mauve uses a hash table to tra
kknown mat
hes. The hash fun
tion h(M) for a mat
h M yields a quantity we refer toas the generalized o�set of a mat
h M . Using the notation of multi-MUMs introdu
edin the primary manus
ript, h(M) 
an be written as h(M) =
∑G

j=1 |M.Sj . . .M.S1|. Inorder to mitigate the e�e
ts of potential hash 
ollisions, ea
h bu
ket of the hash tableuses a binary sear
h tree to store mat
hes.For the purposes of time 
omplexity analysis, the mat
hing algorithm 
an be de-
onstru
ted into four primary 
omponents: Sorted Mer List (SML) 
onstru
tion, seedmat
h identi�
ation, seed lookup in the known mat
h hash table, and seed extension.SML 
onstru
tion 
an be a

omplished in O(Gn) (linear) time using radix sort meth-ods. Identifying seed mat
hes from the Sorted Mer Lists requires a single sequentials
an through ea
h SML and is thus also O(Gn). The seed lookup phase 
an be exe-
uted at most on
e for every multi-MUM seed. Be
ause there are Gn mers, the largestpossible number of unique mer-mat
hes is Gn
2
. If all of these mer-mat
hes were to hashto the same bu
ket then a tree sear
h and insertion would be required for every seedmat
h. Using a splay tree (Sleator and Tarjan, 1985), the amortized time 
omplexityfor Gn tree lookups and insertions is O(Gn logGn). The amount of mat
h extensiondepends on the number and size of multi-MUMs identi�ed. Be
ause we are identifyingMUMs, ea
h nu
leotide 
an be a part of at most 2 MUMs on the forward strand and 2MUMs on the reverse strand, for a total of 4 MUMs. Furthermore, it holds that any 2nu
leotide 
an be a part of at most 4 multi-MUMs with a given multipli
ity. Thus ea
hnu
leotide 
an be a part of 4G multi-MUMs, or just O(G) multi-MUMs. For a givenmultipli
ity m, the largest possible amount of extension work depends on the maximumpossible number of mat
hing mers at that multipli
ity: Gn

m
. Further, ea
h extension at a



165parti
ular multipli
ity m requires m 
hara
ter 
omparisons. Thus the maximum numberof 
hara
ter 
omparisons for a given multipli
ity is mGn
m

or just Gn, and sin
e there are
G multipli
ity levels, the maximum number of 
omparisons to �nd all multi-MUMs is
G2n.By adding the 
ontributions ea
h of the algorithm�s four 
omponents make towardthe total running time, we arrive at Gn+Gn+Gn logGn+G2n. In asymptoti
 notation,the Gn terms are subsumed by G2n, leaving O(G2n+Gn logGn). It is important to notethat although su�x tree algorithms provide better asymptoti
 time 
omplexity than ourseed-and-extend method, in pra
ti
e our implementation is very fast and spa
e e�
ient.Furthermore, the seed mat
hing te
hnique 
an be easily modi�ed to use weighted/spa
edseeds, allowing inexa
t string mat
hing not possible with su�x tree-like data stru
turesin the same low asymptoti
 time 
omplexity.



166Appendix C
Partitioning mat
hes into 
ollinearsubsets
As part of the an
hor sele
tion pro
ess, Mauve must partition the initial set of multi-MUMs M into 
ollinear subsets. To do so, Mauve implements a breakpoint analysisalgorithm based on the des
ription of breakpoints given by Blan
hette et al. (1997). Werefer to the resulting 
ollinear sets of multi-MUMs as LCBs. An LCB 
an be de�nedformally as a maximal 
ollinear subset of the mat
hes in M, or lcb ⊆ M where Mi isthe ith multi-MUM in the LCB. The MUMs that 
onstitute an LCB must satisfy a totalordering property su
h that Mi.Sj ≤ Mi+1.Sj holds for all i, 1 ≤ i ≤ |lcb| and all j,
1 ≤ j ≤ G.Mauve uses a standard breakpoint determination algorithm to partition the set ofmulti-MUMs into a set of LCBs. First, Mauve orders the multi-MUMs inM on |Mi.S0|.Next, a monotoni
ally in
reasing label between 1 and |M | is assigned to ea
h MUM
orresponding to the index of the MUM in the ordering on |Mi.S0|. We will refer to thelabel of the ith multi-MUM as Mi.label. Note that Mi.label ∈ N. Next, the set of multi-MUMs is repeatedly reordered based on |Mi.Sj| for j = 2 . . . G. After ea
h reordering,the set of multi-MUMs are examined for breakpoints. A breakpoint exists between
Mi and Mi+1 if Mi.label + 1 6= Mi+1.label and both Mi and Mi+1 are in the forward



167orientation, or if Mi.label − 1 6= Mi+1.label and both Mi and Mi+1 are in the reverse
omplement orientation. A breakpoint also exists if Mi is in a di�erent orientation than
Mi+1 in sequen
e j, e.g. the sign of Mi.Sj is di�erent than the sign of Mi+1.Sj . Finally,the multi-MUMs are re-ordered on M.label and the LCBs are then any maximal lengthsubsequen
e of multi-MUMsMi . . .Mi+j that does not 
ontain any re
orded breakpointsbetween multi-MUMs.
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