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iAbstrat
The explosive growth of genome sequening has yielded omplete genome sequenes ofseveral losely related baterial speies, and e�orts to sequene entire populations areunderway. Through genome omparison we expet to gain insight into the seletiveonstraints shaping the evolution of these organisms. Genome omparison also pro-vides a framework for haraterizing the rates and patterns of large-sale evolutionaryevents suh as genomi rearrangement and lateral gene transfer whih to date are poorlyunderstood.This doument desribes the development of omputational methods for the iden-ti�ation and lassi�ation of homologous genomi sequene among a set of sequenedgenomes. The homology analysis onsists of four basi proedures : (1) rapid identi�a-tion of segmental homology from raw genomi sequene, (2) distinguishing orthologousand xenologous segments from paralogous segments, (3) global multiple alignment oforthologous and xenologous segments, and (4) disrimination between orthology andxenology.The suess of the analysis proedure rests on previously established models of se-quene and genome evolution. Genome sequenes typially omprise several million orbillion nuleotides, thus the sale of the data analysis poses a hallenge. Several heuris-ti approahes for oping with large datasets have been investigated and are reportedherein.Appliation of the analyti tehniques to the sequened genomes of Enteri bateriareveals striking patterns of genome evolution. Rates of genomi rearrangement appear



iito be highly variable in the enteri bateria and may be linked to adaptive evolution.The analysis reveals substantial evidene for widespread homologous reombination inpopulations of enteri bateria, indiating that these mirobes annot be onsidered aslonal populations.
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1Chapter 1
Introdution
Sine Zukerkandl and Pauling �rst desribed moleules as douments of evolutionaryhistory (Zukerkandl and Pauling, 1965), our ability to transode DNA sequene intoomputer-readable information has undergone several dramati revolutions. Currentgenome sequening tehnology (Margulies et al., 2005, Shendure et al., 2005) provideslow-ost sequening for mirobial genomes and populations. The vast quantity of ge-nomi information available presents us with the tantalizing possibility of using moleularinformation to reonstrut the evolutionary history that has led to the urrent state ofour biosphere.Along the path to reonstruting evolutionary history we inevitably disover newfaets of the biology of modern organisms. The indelible mark of evolution lies onevery organism within and around us, and that mark an be exploited to draw infereneon everything from population dynamis, to mating behavior, disease, the organism'sbiohemistry, and the organism's environment. Grounded in an understanding of modernbiology and evolutionary history, we may begin to make similar inferenes on the biologyof organisms that lived many thousands or millions of years ago.Given our newfound ability to read the douments of evolutionary history, we nowfae the hallenge of omprehending the story unfolding before us. We must ask ourselvesat what sale should we attempt to understand the proess of evolution. Many previous



2studies have eluidated the evolutionary history of one or a few individual genes, whihare taken as representative of the organism. When taken out of the ontext of thegenomes in whih they reside, the inferred evolutionary history of individual genes mayshow mysterious patterns that are di�ult to interpret. For example, when interatingproteins o-evolve, distint genes will have intertwined evolution but suh an e�et maynot be observed by onsidering only one of the two genes. Thus to study organismalevolution it seems natural to study the evolution of genomes as a whole. Of ourse,organisms live in the ontext of an environment whose onditions often have a profoundimpat on the biology of the organism. Thus, one might also ask whether it makes senseto study genome evolution in isolation of a orresponding study on the evolution of theenvironment.Reent omparative studies of baterial genomes have demonstrated that members ofthe same mirobial speies may harbor as muh as 10-20% unique genomi ontent notpresent in other isolates of the same speies (Perna et al., 2001, Tettelin et al., 2005). Insome ases the novel genomi ontent appears to be reently aquired and spei� to theenvironment in whih the partiular baterium lives (Sullivan et al., 2006). Furthermore,bateriophage appear to play a fundamental role in introduing and maintaining genetidiversity within bateria (Edwards and Rohwer, 2005). If geneti ontent is in fatfrequently environment- and nihe-spei�, a study of individual mirobial genomes inisolation would fail to reveal the fundamental role that environment-spei� phage haveplayed in evolution.Inferene of evolutionary history through DNA sequene is a startlingly omplextask. Given two or more DNA sequenes that presumably desended from a ommonanestor, we would like to identify the most likely anestral sequene, and a series



3of events that transformed the anestor into the presently observed sequenes. Ourinferenes are prediated on some model of moleular hange, i.e. a set of allowablemutation operations that an be used to transform one sequene into another. Givena set of mutation operations, our model then must haraterize the frequeny withwhih eah type of mutation might our. Typially, we are unertain what model bestdesribes the moleular evolution of any given DNA sequene, thus we must furtherassume that our model is wrong. Even if the hosen model fails to apture the truenature of the evolutionary proess, it may nevertheless prove to be a useful model if itan make reasonably aurate preditions when faed with data whose evolution violatesmodel assumptions.A model of genome evolutionAs genomes evolve, they undergo large sale evolutionary proesses not readily observedamong short gene sequenes. Reombination auses frequent genome rearrangements,horizontal transfer introdues new sequenes into baterial hromosomes, and deletionsremove segments of the genome. Given a set of genomes to ompare, onserved regionsmay exist among some or all taxa, and their ordering may be shu�ed among taxa.Traditional models of sequene evolution inorporate nuleotide substitution, andinsertion and deletion of small subsequenes (indels). To aount for genome-sale evo-lution, we must extend the model to inlude rearrangement events suh as inversion,transloation, and hromosomal fusion and �ssion. When ombined with di�erentialgene loss, segmental dupliation an also reate the e�et of apparent genome rear-rangement. Finally the model must inorporate some notion of gene aquisition.Given our model of genome evolution and a data set of genome sequenes, we would



4ideally be able to derive the most likely history of mutation events under that model.Unfortunately, the omplex model struture and the sale of genomi datasets preludediret analysis. In order to draw omputationally tratable inferene on genome evolu-tion, we subdivide the analyti proedure into the separate steps of genome alignmentand evolutionary analysis. Subsequent hapters of this doument desribe methods forgenome alignment and evolutionary analysis that have been developed.The genome alignment proess identi�es regions of sequene that are likely to beorthologous. That is, an alignment identi�es nuleotides whih are derived from the samenuleotide in the ommon anestor of one or more extant genomes. When homologousgenomi segments have been aquired via lateral gene transfer, suh segments are saidto be xenologous beause the ommon anestor of those segments is di�erent than theommon anestor for the lonally reprodued portion of the genome.The genome alignment tehniques desribed herein do not distinguish between xenol-ogous and orthologous segments. In order to distinguish suh segments, we analyze thegenome alignment to identify regions whose moleular evolution is best explained by ahistory that inludes ross-speies lateral gene transfer or intraspei� reombination.We apply our genome alignment methods to a large group of enteri bateria. Theresulting genome alignments provide a foundation for investigations into the evolutionof these bateria. Spei�ally, we investigate rates of intraspei� reombination andgene aquisition both within speies and aross speies.



51.1 An overview of the following haptersThe following hapters desribe new methods we have developed to address the prob-lem of genome alignment, and also doument omparative analyses of enteri bateriaenabled by the omputed genome alignments. Spei�ally, Chapter 2 disusses previ-ous work related to genome alignment, statistial analysis of moleular evolution, andanalysis of genome evolution. Chapter 3 desribes an e�ient tehnique for identifyingloal-multiple alignments whih an subsequently be used as genome alignment anhors.The subsequent hapter desribes an e�ient approah to alignment of genomi DNAonserved among a group of losely-related organisms. Chapter 5 desribes an extensionof the genome alignment tehnique presented in Chapter 4 to handle organisms whihhave variable genomi mutation rates and have gained or lost substantial amounts ofgeneti material. We then srutinize the auray of the desribed genome alignmentmethods in Chapter 6, drawing omparison to other state-of-the-art methods. Chapter 7douments a tehnique for partitioning genome alignments into segments with onsistentphylogeneti signal, i.e. distinguishing orthologous segments from xenologous segments.Chapter 8 desribes an analysis of gene gain and loss patterns among a large groupof enteri bateria, based on genome alignments omputed using our newly developedmethods. Finally, Chapter 9 disusses problems with urrent approahes to genomealignment and proposes a Bayesian model of genome evolution for whih alignments andevolutionary histories ould be jointly estimated.



61.1.1 Spei� ontributions of this thesis
• A omputational method for e�ient math �ltration and identi�ation of loal-multiple alignments, supporting rapid homology detetion in large genome se-quenes
• A omputational method for multiple genome alignment and omparison that iden-tify orthologous and xenologous sequene more aurately than previous methods
• Simulation-based methods to haraterize the auray of genome alignment algo-rithms
• An analysis of Enterobateria to identify funtional ategories of genes that tendto be exeptionally well-onserved throughout evolution
• An analysis of E. oli populations to identify highly variable regions and disoveryof an assoiation among genomi variability and annotated funtional non-odingRNA.
• A desription of a Bayesian model of genome evolution that aptures the majorpatterns of mutation in the Enterobateriaae.



7Chapter 2
Related work
Evolutionary models of nuleotide substitution desribe rates and patterns of substitu-tion between a pair of sequenes. The simplest model, referred to as the Jukes-Cantormodel, asserts that eah nuleotide in the sequene has an equal probability of mutationper unit time, and that when it mutates, it beomes one of the other three nuleotideswith equal probability (Jukes and Cantor, 1969). Similar models inrease in �exibilityand parameterization up to the general reversible model, whih uses six parameters tospeify the probability of mutation between any pair of nuleotides per unit time (Felsen-stein, 2004). Suh models are time-reversible, in the sense that if we have nuleotide iat one end of a branh and nuleotide j at the other, the probability of hanging fromi to j, P (i→ j), is equal to that for hanging from j to i, P (j → i), assuming uniformbakground nuleotide frequenies. When P (i → j) and P (j → i) are unequal, themodel is not reversible and it beomes easier to alulate the position of the root on thetree. The most general non-reversible model spei�es probabilities for all 12 possiblenuleotide substitutions (Felsenstein, 2004).



82.0.2 Sequene alignmentThe basi evolutionary models give rise to soring shemes for the vast majority ofsequene alignment methods. These sequene alignment methods ombine a substitu-tion matrix omposed of log-likelihood estimates of nuleotide substitution probabili-ties with an empirially derived penalty for introduing gaps to ultimately arrive at asoring sheme for alignments with gaps. Early sequene alignment algorithms suhas Needleman-Wunsh alulate the highest soring alignment between a pair of glob-ally homologous sequenes under the given soring sheme (Needleman and Wunsh,1970). Smith-Waterman loal alignment extends the basi Needleman-Wunsh approahto the ase where input sequenes may not be globally homologous by identifying loallyhigh-soring subsequenes (Smith and Waterman, 1981). Both methods utilize dynamiprogramming to �nd the highest soring alignments. Although suh methods ouldtheoretially be applied to align several sequenes of arbitrary length, their dynamiprogramming algorithms require O(nG) alulation where n is sequene length and Gis the number of genomes. As either n or G grow the amount of omputation requiredquikly beomes intratable.The low-ost and ready availability of genome sequening has driven developmentof salable methods to align multiple sequenes of arbitrary length. Many multiple se-quene aligners extend Needleman-Wunsh to progressive alignment (Thompson et al.,1994, Lee et al., 2002, Notredame et al., 2000), whih sales O(Gn2). In the progressivealignment model, a phylogeneti tree guides an alignment proedure where the mostlosely related sequenes are aligned �rst and eah additional sequene is aligned tothe growing multiple alignment in an order spei�ed by its distane in the phylogeneti



9guide tree. A further improvement to the progressive alignment strategy is the addi-tion of an iterative re�nement step performed after the initial progressive alignment (Doet al., 2005, Edgar, 2004). Iterative re�nement repeatedly selets arbitrary sequene(s)to remove from the alignment and re-align. Empirial studies demonstrate that iter-ative re�nement signi�antly improves alignments generated by progressive alignmentapproahes (Wallae et al., 2005). Surprisingly, iterative re�nement produes betteralignments when it onsiders guide trees other than the topology presumed to be the'orret' phylogeny for the input sequenes (Edgar, 2004).Progressive multiple sequene alignment methods su�er the limitation that applia-tion to long (typially n > 100Kbp) sequenes beomes prohibitively time-onsuming.Several heuristi approahes to align long sequenes have been developed under the as-sumption that highly similar subsequenes an be found quikly and are likely to bepart of the orret global alignment. These loal alignments are used to anhor a globalalignment, reduing the number of possible global alignments onsidered during a sub-sequent O(n2) dynami programming step. Some spurious loal alignments are typiallyfound due to random sequene similarity, partiularly when using a sensitive loal align-ment method. A method for seleting alignment anhors must be employed to �lter outspurious mathing regions. Alignment tools suh as MUMmer (Delher et al., 1999),GLASS (Batzoglou et al., 2000), and AVID (Bray et al., 2003) align pairs of long se-quenes, implementing various methods to disover loal alignments. Similar multiplesequene alignment methods for long sequenes have been developed and implementedin software pakages suh as MAVID (Bray and Pahter, 2003), Multi-LAGAN (Brudno



10et al., 2003a), TBA (Blanhette et al., 2004), MGA (Hohl et al., 2002), and Auber-Gene (Szklarzyk and Heringa, 2006). All of these pairwise and multiple sequene align-ers assume the input sequenes are free from signi�ant rearrangements of sequeneelements, seleting a single ollinear set of alignment anhors.Long genomi sequenes typially ontain signi�ant rearrangements of orthologoussequene and methods have reently been developed to align genomi sequene in thepresene of rearrangements (Brudno et al., 2003b, Darling et al., 2004a, Ovharenkoet al., 2005, Blanhette et al., 2004, Treangen and Messeguer, 2006, Raphael et al., 2004).Suh methods relax the assumption that alignment anhors must our in the same orderand orientation, allowing inversions and other rearrangements of anhors. One a set ofanhors has been seleted, these methods typially use progressive alignment to ompletea multiple alignment.Alignment anhor seletion in the presene of rearrangements is losely related tothe problem of segmental homology detetion. The segmental homology detetion taskis simply to identify all homologous regions of sequene among a pair of genomes. Onegeneral approah identi�es regions of sequene where loal alignments tend to lustertogether (Pevzner and Tesler, 2003a, Hampson et al., 2005, Calabrese et al., 2003, Kurtzet al., 2004b). Suh methods onsider the distane between loal alignments on thehromosome as an indiator of segmental homology but do not usually onsider quality(sore) of suh loal alignments or their ollinearity. A seond set of approahes onsid-ers alignment sores and distanes between alignments in a pairwise (Haas et al., 2004)or multiple sequene setting (Abouelhoda and Ohlebush, 2004, Bourque et al., 2004).A third approah onsiders loal alignment quality and ollinearity, but not distane



11between loal alignments in order to aommodate di�erential gene ontent due to dele-tion and horizontal transfer (Darling et al., 2004a, Mau et al., 2004). Other approahesombine hromosomal distane, loal alignment sore, and ollinearity metris (Dar-ling et al., 2004b, Hampson et al., 2003). None of these methods onsider the series ofrearrangement events that would give rise to a given segmental homology struture.All of the alignment methods desribed thus far use an ad-ho soring penalty to de-termine the plaement of gaps in the alignment. A seond body of work assumes a morerigorous evolutionary model that inludes nuleotide birth and death rates in additionto substitution rates. Methods based on suh a model are referred to as �statistial�alignment methods. When onsidering the probability of an alignment, these methodssum over the probability of all possible evolutionary histories that ould give rise to thatpartiular alignment given a �xed phylogeneti tree. The simplest evolutionary modelthat onsiders indels is the TKF91 model, whih models single nuleotide insertions anddeletions with equal birth and death rates for all sites in a sequene (Thorne et al., 1991).The TKF91 model has been studied extensively and extended from pairwise alignmentto alignment on arbitrary phylogeneti trees (Nielsen, 2005). Beause TKF91 only mod-els single nuleotide indels, likelihood alulations for larger indels remain skewed. Aslightly more realisti model was reported in TKF92, whih models indels of arbitrarylength, but whih may not overlap eah other in the evolutionary history (Thorne et al.,1992), i.e. an inserted sequene may not subsequently have a deletion. A further modelimprovement, referred to as the long-indel model, allows overlapping indels and wasreently presented in onjuntion with an algorithm to alulate alignment likelihoodsunder the model (Miklòs et al., 2004). The primary hindrane to widespread adoption ofstatistial alignment methods has been their prohibitive omputational ost. The most



12e�ient implementations of TKF91 require O(2GnG) time to deterministially omputethe most likely alignment, while the long indel model requires O(n4) time for an ap-proximate pairwise alignment whih allows up to two overlapping indels per site (Lunteret al., 2003, Nielsen, 2005, Metzler et al., 2001, Fleissner et al., 2005, Lunter et al., 2005,Holmes and Bruno, 2001). Reent progress in this area has yielded an implementationof long-indel model alignment alled Bali-Phy (Redelings and Suhard, 2005, Suhardand Redelings, 2006). Bali-Phy simultaneously estimates the alignment and phyloge-neti tree, using Markov-hain Monte-Carlo to sample the joint posterior distributionof alignments and phylogenies. The model of evolution assumes that indel rates arealways proportional to substitution rates, thus variability in indel or substitution ratesover time would onstitute model violation.A simple and obvious extension to the basi evolutionary models onsiders that nu-leotide substitutions and indels do not our with equal probability at all sites in asequene. One example are oding regions where silent third base pair substitutions ap-pear more frequently than substitutions at other sites and frameshift-induing indels areusually seleted against. Some sore-based alignment methods an aount for position-spei� mutation rates (Kent and Zahler, 2000, Thompson et al., 1994, Edgar, 2004), buta more general approah has been implemented using Pro�le Hidden Markov Models,whih model site-spei� substitution, insertion, and deletion rates at all sites (Durbinet al., 1998). Pro�le-HMMs require O(n2) time and spae to align a sequene to a pro-�le. Constrution of the initial pro�le an proeed from a manually-urated multiplealignment or de novo using Baum-Welh training. In order to aurately estimate site-spei� mutation rates and produe reasonable alignments, suh methods require muhmore sequene data than the previously desribed sore based methods. Beause large



13amounts of genome sequene data have not yet beome available Pro�le-HMM methodshave not yet been extended to large genomi sequenes.One ritiism of Pro�le-HMM methods is their ignorane of the phylogeneti rela-tionship among sequenes ontributing to the pro�le. To address this ritiism severalTree-HMM models have been proposed (Qian and Goldstein, 2003, Mithison, 1999,Mithison and Durbin, 1995). Given a phylogeny, suh models typially plae a Pro�le-HMM at eah node of the phylogeny, assigning probabilities for transitions between eahpair of Math, Insert, and Delete states along eah branh. Although Tree-HMMs anmodel site-spei� variation along a phylogeny they remain di�ult to onstrut in astatistially sound manner, usually requiring a pre-existing multiple sequene alignmentand phylogeny. Furthermore, ontroversy exists over the issue of 'memory' whereby ananestral state biased toward a partiular type of insertion or deletion inorretly biasesdesendant states toward the same insertion or deletion (Felsenstein, 2004).2.0.3 Phylogeneti infereneAssuming that the sequenes under study are related, phylogeneti inferene attemptsto reonstrut a likely history of their divergene and possibly the history of mutationevents that gave rise to the observed sequenes. Early methods used parsimony or somedistane metri over nuleotide substitutions to inform tree inferene. Although thesemethods an be e�iently applied to a large number of sequenes, parsimony tends tounderestimate true phylogeneti distane, while distane-based methods don't providea history of mutation events (Holder and Lewis, 2003).More reently, methods based on the previously desribed nuleotide substitutionmodels have gained aeptane in the form of Maximum Likelihood (ML) or Bayesian



14estimates of phylogeny (Holder and Lewis, 2003). Bayesian methods provide a partiu-larly appealing route for phylogeneti inferene beause not only an they provide themost likely onsensus tree, but an also assess the unertainty in various tree topologiesand evolutionary senarios. Bayesian phylogeneti inferene over nuleotide substitutiondata was pioneered by Mau et al. (1999), and has sine blossomed with several furtherre�nements and widely used implementations (Larget and Simon, 1999, Huelsenbekand Ronquist, 2001, Drummond et al., 2006).With advanes in genome sequening, analyses of horizontal transfer and genomerearrangement have beome feasible. Early methods to analyze genome rearrangementsfoused on determining parsimonious inversion and transloation senarios among pairsof sequenes (Hannenhalli and Pevzner, 1995). Parsimony models of inversion werelater extended to phylogeneti inferene among several rearranged genomes (Tang andMoret, 2003, Bourque and Pevzner, 2002). Larget et al. (2002) pioneered a Bayesianmethod to infer a series of inversion events and an assoiated phylogeny, and reentlydesribed extensions to their method that enable e�ient and reliable analysis of largedata sets (Larget et al., 2004). Reently Miklos (2003) desribed a Bayesian inferenemodel for inversions and transpositions between a pair of genomes, however it has yet tobe extended to phylogeneti inferene among multiple genomes. Reent work has yieldednew models for rearrangement that inlude the blok interhange operation, whereby asegment of DNA may exise from the hromosome, form a irular-intermediate, andre-insert elsewhere in the hromosome, possibly linearizing with di�erent endpoints thanthe original exised segment (Yanopoulos et al., 2005, Lu et al., 2005).



152.0.4 Integrated inferene methodsAs previously mentioned, the steps of model seletion, alignment (inferene of orthology),and phylogeneti inferene are interrelated in that inferenes made in one step an a�etinferenes made in another. Numerous attempts have been made to integrate these stepsinto a uni�ed methodology. Many of these methods follow the Expetation-Maximizationparadigm whereby they estimate the alignment given the tree, then re-estimate the treegiven the alignment. One example is MAVID, whih iteratively re�nes tree topology (butnot branh lengths) and a genome alignment (Bray and Pahter, 2003). BADGER usesBayesian MCMC to osample inversion phylogeny and inversion history (Larget et al.,2004). Lunter et al. (2005) desribe an e�ient method for osampling protein sequenealignments and phylogeneti trees using the TKF91 model, and the aforementionedBali-Phy method extends the osampling to a model that inludes multi-residue indels.Sampling methods have the additional advantage of assessing on�dene in a partiularalignment or tree topology in the form of a posterior probability for the inferene.



16Chapter 3
Math �ltration for loal-multiplealignment
3.1 IntrodutionPairwise loal sequene alignment has a long and fruitful history in omputational biol-ogy and new approahes ontinue to be proposed (Ma et al., 2002a, Brudno and Mor-genstern, 2002, Noé and Kuherov, 2004, Kent, 2002, Shwartz et al., 2003, Kahveiet al., 2004). Advaned �ltration methods based on spaed-seeds have greatly improvedthe sensitivity, spei�ity, and e�ieny of many loal alignment methods (Choi et al.,2004, Li et al., 2006, Sun and Buhler, 2005, Xu et al., 2004, Flannik and Batzoglou,2005). Common appliations of loal alignment an range from orthology mapping (Liet al., 2003) to genome assembly (Ja�e et al., 2003) to information engineering taskssuh as data ompression (Ane and Sanderson, 2005). Reent advanes in sequene dataaquisition tehnology (Margulies et al., 2005, Shendure et al., 2005) provide low-ostsequening and will ontinue to fuel the growth of moleular sequene databases. Toope with advanes in data volume, orresponding advanes in omputational methodsare neessary; thus we present an e�ient method for loal multiple alignment of DNAsequene.



17Unlike pairwise alignment, loal multiple alignment onstruts a single multiple align-ment for all ourrenes of a motif in one or more sequenes. The motif ourrenes maybe idential or have degeneray in the form of mismathes and indels. As suh, loalmultiple alignments identify the basi repeating units in one or more sequenes and anserve as a basis for downstream analysis tasks suh as multiple genome alignment (Dar-ling et al., 2004a, Hohl et al., 2002, Treangen and Messeguer, 2006, Dewey and Pahter,2006), global alignment with repeats (Sammeth et al., 2005, Sammeth and Heringa,2006, Raphael et al., 2004), or repeat lassi�ation and analysis (Edgar and Myers,2005). Beause it identi�es multiple alignments, loal multiple alignment di�ers fromtraditional pairwise methods for repeat analysis whih either identify repeat families denovo (Kurtz et al., 2000) or using a database of known repeat motifs (Jurka et al., 2005).Previous work on loal multiple alignment inludes an Eulerian path approah pro-posed by Zhang and Waterman (2005). Their method uses a de Bruijn graph based onexatly mathing k-mers as a �ltration heuristi. Our method an be seen as a general-ization of the de Bruijn �ltration to arbitrary spaed seeds or seed families. However, ourmethod employs a di�erent approah to seed extension that an identify long, low-opynumber repeats.The loal multiple alignment �ltration method we present has been designed toe�iently proess large amounts of sequene data. It may be used to quikly �ndonserved repetitive motifs in a single sequene, or, may be used to identify putativehomology in a group of onatenated sequenes. The remainder of the hapter disussesour method in the ontext of �nding repeats in a single sequene, although the methodtrivially generalizes to �nding repeats and putative homology in a group of onatenatedsequenes. Our method is not designed to detet subtle motifs suh as transription
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ACAGCTAGCATGGCAA...GTTACCTAG

1*1*1

1 AAC
 2 ACG
  3 ACA
   4 CAC
    5 CAC
     6 TCA
      7 ACT

Step 1. Apply seed pattern at each position
to extract either the forward or reverse seed

8 CTC
 9 CAG
 10 AGC
  11 TCA
   12 GCA
     ...
      

  ...
  N-9 GAC
   N-8 GTA
    N-7 AGA
     N-6 ACA
      N-5 CAG

      

  1 AAC
  3 ACA
N-6 ACA
  2 ACG
  7 ACT
N-7 AGA
 10 AGC
  4 CAC
  5 CAC

Step 2. Hash seeds to identify
matches of two or more seeds

  9 CAG
N-5 CAG
  8 CTC
 12 GCA
N-9 GAC
N-8 GTA
  6 TCA
 11 TCA

}

} }

}

Figure 1: Appliation of the palindromi seed pattern 1*1*1 to identify degeneratemathing subsequenes in a nuleotide sequene of length N . The pattern 1*1*1 indi-ates a requirement for mathing nuleotides at positions 1, 3, and 5 of a subsequene,while positions 2 and 4 may mismath. The lexiographially-lesser of the forward andreverse omplement subsequene indued by the seed pattern is used at eah sequeneposition.fator binding sites in small, targeted sequene regions�stohasti methods are bettersuited for suh tasks (Bailey and Elkan, 1995, Siddharthan et al., 2005, Lawrene et al.,1993).3.2 Overview of the methodOur loal multiple alignment �ltration method begins by generating a set of andidatemulti-mathes using palindromi spaed seed patterns (listed in Table 1). The seedpattern is evaluated at every position of the input sequene, and the lexiographially-lesser of the forward and reverse omplement subsequene indued by the seed pattern ishashed to identify seed mathes (Figure 1). The use of palindromi seed patterns o�ersomputational savings by allowing both strands of DNA to be proessed simultaneously.Given an initial set of mathing sequene regions, our algorithm then maximallyextends eah math to over the entire surrounding region of sequene identity. A visual



19Weight Pattern Seed Rank by Sequene Identity65% 70% 75% 80% 85% 90%5 11*1*11 1 1 1 1 1 16 1*11***11*1 1 1 1 1 1 17 11**1*1*1**11 1 1 1 1 1 18 111**1**1**111 1 1 1 1 1 19 111*1**1**1*111 1 1 1 1 1 110 111*1**1*1**1*111 1 1 1 1 1 111 1111**1*1*1**1111 1 1 1 1 1 212 1111**1*1*1*1**1111 5 3 1 1 1 113 1111**1**1*1*1**1**1111 > 10 5 1 1 1 114 1111**11*1*1*11**1111 2 2 1 1 1 115 1111*1*11**1**11*1*1111 1 1 1 1 1 116 1111*1*11**11**11*1*1111 2 1 1 1 1 118 11111**11*1*11*1*11**11111 1 1 1 1 1 119 1111*111**1*111*1**111*1111 5 2 1 1 1 120 11111*1*11**11*11**11*1*11111 > 10 > 10 3 1 1 121 11111*111*11*1*11*111*11111 1 1 1 3 3 2Table 1: Palindromi spaed seeds used by prorastAligner. The sensitivity ranking ofa seed at various levels of sequene identity is given in the olumns at right. A seed withrank 1 is the most sensitive seed pattern for a given weight and perent sequene identity.The default seeds used by prorastAligner are listed here, while the additional optionalseeds appear in Tables 17 and 18 of Appendix A.example of maximal extension is given by the blak math in Figure 2. In order toextend over eah region of sequene O(1) times, our method extends mathes in order ofdereasing multipliity�we extend the highest multipliity mathes �rst. When a mathan no longer be extended without inluding a gap larger than w haraters, our methodidenti�es the neighboring subset mathes within w haraters, i.e. the light gray seedin Figure 2. We then link eah neighboring subset math to the extended math. Werefer to the extended math as a superset math. Rather than immediately extend thesubset math(es), we prorastinate and extend the subset math later when it has thehighest multipliity of any math waiting to be extended. When extending a math
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ACGGATTAGATSequence:

Seed Matches:

Maximal extension

of black seed:

Subset link to 

light gray seed:Figure 2: Seed math extension. Three seed mathes are depited as blak, gray, andlight gray regions of the sequene. Blak and gray have multipliity 3, while light grayhas multipliity 2. We maximally extend the blak seed to the left and right and in doingso, the blak seed hains with the gray seed to the left. The light gray seed is adjaentto only two out of three omponents in the extended blak seed, thus we refer to thelight gray seed as a subset relative to the extended blak seed. We prorastinate andextend the light gray seed later. We reate a link between light gray and the extendedblak seed math.with a linked superset (light gray in Figure 2), we immediately inlude the entire regionovered by the linked superset math�obviating the need to re-examine sequene alreadyovered by a previous math extension.We sore alignments generated by our method using the entropy equation and exat
p-value method in Nagarajan et al. (2005). Our method may produe many hundreds orthousands of loal multiple alignments for a given genome sequene, thus it is importantto rank them by signi�ane. When omputing olumn entropy, we treat gap haratersas missing data.



213.3 Algorithm3.3.1 Notation and assumptionsGiven a sequene S = s1, s2, . . . , sN of length N de�ned over an alphabet {A,C,G, T},our goal is to identify loal multiple alignments on subsequenes of S. Our �ltrationmethod �rst generates andidate hains of ungapped alignments, whih are later soredand possibly re-aligned. Denote an ungapped alignment, or math, among subsequenesin S as an objet M . We assume as input a set of ungapped alignments M. We referthe number of regions in S mathed by a given mathMi ∈M as the multipliity ofMi,denoted as |Mi|. We refer to eah mathing region of Mi as a omponent of Mi. Notethat |Mi| ≥ 2 ∀ M ∈ M. We denote the left-end oordinates in S of eah omponentof Mi as Mi.L1,Mi.L2, . . . ,Mi.L|Mi|, and similarly we denote the right-end oordinatesas Mi.Rx. When aligning DNA sequenes, mathes may our on the forward or reverseomplement strands. To aount for this phenomenon we add an orientation value toeah mathing region: Mi.Ox ∈ {1,−1}, where 1 indiates a forward strand math and-1 for reverse.Our algorithm has an important limitation on the mathes in M: no two mathesMiand Mj may have the same left-end oordinate, e.g. Mi.Lx 6= Mj.Ly ∀ i, j, x, y exeptfor the identity ase when i = j and x = y. This onstraint has been referred to byothers as onsisteny and transitivity (Szklarzyk and Heringa, 2004) of mathes. Inthe present work we only require onsisteny and transitivity of mathes longer than theseed length, e.g. seed mathes may overlap.



223.3.2 Data struturesOur algorithm begins with an initialization phase that reates three data strutures.The �rst data struture is a set of Math Reords for eah math M ∈M. The MathReord stores M , a unique identi�er for M , and two items whih will be desribed laterin Setion 3.3.3: a set of linked math reords, and a subsuming math pointer. Thelinked math reords are further subdivided into four lasses: a left and right supersetlink, and left and right subset links. The subsuming math pointer is initially set to aNULL value. Figure 3 shows a shemati of the math reord.We refer to the seond data struture as a Math Position Lookup Table, or P. Thetable has N entries p1, p2, . . . , pN , one per harater of S. The entry for pt stores theunique identi�er of the math Mi and x for whih Mi.Lx = t or the NULL identi�erif no math has t as a left-end oordinate. We all the third data struture a Mathextension prorastination queue, or simply the prorastination queue. Again, we denotethe multipliity of a math M by |M |. The prorastination queue is a binary heap ofmathes ordered on |M | with higher values of |M | appearing near the top of the heap.The heap is initially populated with allM ∈M. This queue ditates the order in whihmathes will be onsidered for extension.3.3.3 Extending mathesArmed with the three aforementioned data strutures, our algorithm begins the hainingproess with the math at the front of the prorastination queue. For a math Mi thathas not been subsumed, the algorithm �rst attempts extension to the left, then to theright. Extension in eah diretion is done separately in an idential manner and we
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Resulting local multiple alignment chain:
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Figure 3: The math extension proess and assoiated data strutures. (A) First wepop the math at the front of the prorastination queue: M1 and begin its leftwardextension. Starting with the leftmost position of M1, we use the Math Position LookupTable to enumerate every math with a left-end within some distane w. Only M4.L1is within w of M1, so it forms a singleton neighborhood group whih we disard. (B)
M1 has no neighborhood groups to the left, so we begin extending M1 to the right.We enumerate all mathes within w to the right of M1. M2 lies to the right of 3 of 4omponents of M1 and so is not subsumed, but instead gets linked as a right-subsetof M1. We add a left-superset link from M2 to M1. (C) One �nished with M1 wepop M2 from the front of the prorastination queue and begin leftward extension. We�nd the left-superset link from M2 to M1, so we extend the left-end oordinates of
M2 to over M1 aordingly. No further leftward extension of M2 is possible beause
M1 has no left-subset links. (D) Beginning rightward extension on M2 we onstrut aneighborhood list and �nd a hainable math M3, and a subset M4. We extend M2 toinlude M3 and mark M4 as inonsistent and hene not extendable. Upon ompletionof the haining proess we have generated a list of loal multiple alignments.



24arbitrarily hoose to desribe leftward extension �rst. The �rst step in leftward mathextension for Mi is to hek whether it has a left superset link. If so, we perform a linkextension as desribed later. For extension of Mi without a superset link, we use theMath Position Lookup Table P to enumerate all mathes within a �xed distane w of
Mi. For eah omponent x = 1, 2, . . . , |Mi| and distane d = 1, 2, . . . , w we evaluate �rstwhether pMi.Lx−(d·Mi.Ox) is not NULL. If not then pMi.Lx−(d·Mi.Ox) stores an entry 〈Mj, y〉whih is a pointer to neighboring math Mj and the mathing omponent y of Mj.In order to onsider mathes on both forward and reverse strands, we must evalu-ate whether Mi.Ox and Mj.Oy are onsistent with eah other. We de�ne the relativeorientation of Mi.Ox and Mj.Oy as oi,j,x,y = Mi.Ox ·Mj.Oy whih auses oi,j,x,y = 1 ifboth Mi.Ox and Mj.Oy math the same strand and −1 otherwise. We reate a tuple ofthe form 〈Mj, oi,j,x,y, x, d, y〉 and add it to a list alled the neighborhood list. In otherwords, the tuple stores (1) the unique math ID of the math with a left-end at sequeneoordinate Mi.Lx− (d ·Mi.Ox), (2) the relative orientation of Mi.Ox and Mj.Oy, (3) themathing omponent x ofMi, (4) the distane d betweenMi andMj, and (5) the math-ing omponent y of Mj. If Mj = Mi for a given value of d, we stop adding neighborhoodlist entries after proessing that one. The neighborhood list is then sanned to identifygroups of entries with the same math IDMj and relative orientation oi,j,x,y. We refer tosuh groups as neighborhood groups. Entries in the same neighborhood group that haveidential x or y values are onsidered �ties� and need to be broken. Ties are resolved bydisarding the entry with the larger value of d in the fourth tuple element: we prefer tohain over shorter distanes. After tiebraking, eah neighborhood group falls into one ofseveral ategories:
• Superset: The neighborhood group ontains |Mi| separate entries. Mj has higher



25multipliity than Mi, e.g. |Mj| > |Mi|. We refer to Mj as a superset of Mi.
• Chainable: The neighborhood group ontains |Mi| separate entries. Mj and Mihave equal multipliity, e.g. |Mj| = |Mi|. We an hain Mj and Mi.
• Subset: The neighborhood group ontains |Mj| separate entries suh that |Mj| <

|Mi|. We refer to Mj as a subset of Mi.
• Novel Subset: The neighborhood group ontains r separate entries suh that
r < |Mi| ∧ r < |Mj|. We refer to the portion of Mj in the list as a novel subsetof Mi and Mj beause this ombination of mathing positions does not exist as amath in the initial set of mathes M.The algorithm onsiders eah neighborhood group for haining in the order givenabove: hainable, subset, and �nally, novel subset. Superset groups are ignored, as anysuperset links would have already been reated when proessing the superset math.Chainable mathesTo hain math Mi with hainable math Mj we �rst update the left-end oordinatesof Mi by assigning Mi.Lx ← min(Mi.Lx,Mj.Ly) for eah 〈i, j, x, y〉 in the neighborhoodgroup entries. Similarly, we update the right-end oordinates: Mi.Rx ← max(Mi.Rx,Mj.Ry)for eah 〈i, j, x, y〉 in the group. If any of the oordinates in Mi hange we make notethat a hainable math has been hained. We then update the Math Reord for Mjby setting its subsuming math pointer to Mi, indiating that Mj is now invalid and issubsumed by Mi. Any referenes to Mj in the Math Position Lookup Table and else-where may be lazily updated to point to Mi as they are enountered. If Mj has a leftsuperset link, the link is inherited by Mi and any remaining neighborhood groups with



26hainable mathes are ignored. Chainable groups are proessed in order of inreasing dvalue so that the nearest hainable math with a superset link will be enountered �rst.A speial ase exists when Mi = Mj. This ours when Mi represents an inverted repeatwithin w nuleotides. We never allow Mi to hain with itself.Subset mathesWe defer subset math proessing until no more hainable mathes exist in the neighbor-hood ofMi. A subset mathMj is onsidered to be ompletely ontained byMi when forall x, y pairs in the neighborhood group, Mi.Lx ≤Mj.Ly∧Mj.Ry ≤Mi.Rx. When subsetmath Mj is ompletely ontained by Mi, we set the subsuming math pointer of Mj to
Mi. If the subset math is not ontained we reate a link from Mi to Mj. The subsetlink is a tuple of the form 〈Mi,Mj, x1, x2, . . . , x|Mj |〉 where the variables x1 . . . x|Mj | arethe x values assoiated with the y = 1 . . . |Mj| from the neighborhood list group entries.The link is added to the left subset links of Mi and we remove any pre-existing rightsuperset link in Mj and replae it with the new link.Novel subset mathesA novel subset may only be formed when both Mi and Mj have already been maxi-mally extended, otherwise we disard any novel subset mathes. When a novel subsetexists mathes we reate a new math reord Mnovel with left- and right-ends equal tothe outward boundaries of Mi and Mj. Rather than extend the novel subset mathimmediately, we prorastinate and plae the novel subset in the prorastination queue.Reall that the novel subset math ontains r mathing omponents of Mi and Mj. Inonstruting Mnovel, we reate links between Mnovel and eah of Mi and Mj suh that



27
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wFigure 4: Interplay between tandem repeats and novel subset mathes. There are twoinitial seed mathes, one blak, one gray. The blak math has omponents labelled 1-7,and the neighborhood size w is shown with respet to omponent 7. As we attemptleftward extension of the blak math we disover the gray math in the neighborhoodof omponents 2 and 5 of blak. A subset link is reated. We also disover that someomponents of the blak math are within eah others' neighborhood. We lassify theblak math as a tandem repeat and onstrut a novel subset math with one omponentfor eah of the four tandem repeat units: {1}, {2, 3, 4}, {5, 6}, {7}.
Mnovel is a left and a right subset of Mi and Mj, respetively. The links are tuples ofthe form outlined in the previous setion on subset mathes.Oasionally a neighborhood group representing a novel subset math may haveMi =

Mj. This an our when Mi has two or more omponents that form a tandem oroverlapping repeat. If Mi.Lx has Mi.Ly in its neighborhood, and Mi.Ly has Mi.Lz in itsneighborhood, then we refer to {x, y, z} as a tandem unit of Mi. A given tandem unitontains between one and |Mi| omponents of Mi, and the set of tandem units forms apartition on the omponents of Mi. In this situation we onstrut a novel subset mathreord with one omponent for eah tandem unit of Mi. If Mi has only a single tandemunit then we ontinue without reating a novel subset math reord. Figure 4 illustrateshow we proess tandem repeats.After the �rst round of hainingIf the neighborhood list ontained one or more hainable groups we enter another roundof extending Mi. The extension proess repeats starting with either link extension or by



28onstrution of a new neighborhood list. When the boundaries of Mi no longer hange,we lassify any subset mathes as either subsumed or outside of Mi and treat themaordingly. We proess novel subsets. Finally, we may begin extension in the opposite(rightward) diretion. The rightward extension is aomplished in a similar manner,exept that the neighborhood is onstruted from Mi.Rx instead of Mi.Lx and d rangesfrom −1,−2, . . . ,−w and ties are broken in favor of the largest d value. Where left linkswere previously used, right links are now used and vie-versa.Chaining the next mathWhen the �rst math popped from the prorastination queue has been maximally ex-tended, we pop the next math from the prorastination queue and onsider it for exten-sion. The proess repeats until the prorastination queue is empty. Prior to extendingany math removed from the prorastination queue, we hek the math's subsumingmath pointer. If the math has been subsumed extension is unneessary.3.3.4 Link extensionTo be onsidered for leftward link extension,Mi must have a left superset link to anothermath, Mj. We �rst extend the boundaries of Mi to inlude the region overed by Mjand unlink Mi from Mj. Then eah of the left subset links in Mj are examined in turnto identify links that Mi may use for further extension. Reall that the link from Mi to
Mj is of the form 〈Mj,Mi, x1, . . . , x|Mi|〉. Likewise, a left subset link fromMj to anothermath Mk is of the form 〈Mj,Mk, z1, . . . , z|Mk|〉. To evaluate whether Mi may follow agiven link in the left subsets of Mj, we take the set intersetion of the x and z values foreah Mk that is a left subset of Mj. We an lassify the results of the set intersetion



29as:
• Superset: {x1, . . . , x|Mi|} ⊂ {z1, . . . , z|Mk|} Here Mk links to every omponent of
Mj that is linked by Mi, in addition to others.
• Chainable: {x1, . . . , x|Mi|} = {z1, . . . , z|Mk|} Here Mk links to the same set ofomponents of Mj that Mi links.
• Subset: {x1, . . . , x|Mi|} ⊃ {z1, . . . , z|Mk|} Here Mi links to every omponent of Mjthat is linked by Mk, in addition to others.
• Novel Subset: {x1, . . . , x|Mi|}∩{z1, . . . , z|Mk|} 6= ∅ Here Mk is neither a superset,hainable, nor subset relative to Mi, but the intersetion of their omponents in
Mj is non-empty. Mk and Mi form a novel subset.Left subset links in Mj are proessed in the order given above. Supersets are neverobserved, beause Mk would have already unlinked itself fromMj when it was proessed(as desribed momentarily). When Mk is a hainable math, we extend Mi to inludethe region overed by Mk and set the subsuming math pointer in Mk to point to Mi.We unlinkMk fromMj, andMi inherits any left superset link thatMk may have. When

Mk is a subset of Mi we unlink Mk from Mj and add it to the deferred subset list tobe proessed one Mi has been fully extended. Finally, we never reate novel subsetmathes during link extension beause Mk will never be a fully extended math.If a hainable math was found during leftward link extension, we ontinue for anotherround of leftward extension. If not, we swith diretions and begin rightward extension.



303.3.5 Time omplexityA neighborhood list may be onstruted at most w times per harater of S, and onstru-tion uses sorting by key omparison, giving O(wN logwN) time and spae. Similarly,we spend O(wN logwN) time performing link extension. The upper bound on the totalnumber of omponents in the �nal set of mathes is O(wN). Thus, the overall timeomplexity for our �ltration algorithm is O(wN logwN).3.4 ResultsWe have reated a program alled prorastAligner for Linux, Windows, and Ma OS Xthat implements the desribed algorithm. Our open-soure implementation is availableas C++ soure ode liensed under the GPL.We ompare the performane of our method in �nding Alu repeats in the humangenome to an Eulerian path method for loal multiple alignment (Zhang and Waterman,2005). The fous of our algorithm is e�ient �ltration, thus we use a soring metrithat evaluates the �ltration sensitivity and spei�ity of the ungapped alignment hainsprodued by our method. We ompute sensitivity as the number of Alu elements hit bya math, out of the total number of Alu elements. We ompute spei�ity as the ratioof math omponents that hit an Alu to the sum of math multipliity for all mathesthat hit an Alu. Thus, we do not penalize our method for �nding legitimate repeatsthat are not in the Alu family.The omparison between prorastAligner and the Eulerian method is neessarilyindiret, as eah method was designed to solve di�erent (but related) problems. TheEulerian method uses a de Bruijn graph for �ltration, but goes beyond �ltration to



31ompute gapped alignments using banded dynami programming. We report sores fora version of the Eulerian method that omputes alignments only on regions identi�edby its de Bruijn �lter. The results suggest that by using our �ltration method, thesensitivity of the Eulerian path loal multiple aligner ould be signi�antly improved.A seond important distintion is that our method reports all loal multiple alignmenthains in its allotted runtime, whereas the Eulerian method identi�es only a singlealignment.We also test the ability of our method to provide aurate anhors for genomealignment. Using a manually urated alignment of 144 Hepatitis C virus genome se-quenes (Kuiken et al., 2005), we measure the anhoring sensitivity of our method asthe fration of pairwise positions aligned in the orret alignment that are also presentin prorastAligner hains. We measure positive preditive value as the number ofmath omponent pairs that ontain orretly aligned positions out of the total num-ber of math omponent pairs. prorastAligner may generate legitimate mathes inthe repeat regions of a single genome. The PPV sore penalizes prorastAligner foridentifying suh legitimate repeats, whih subsequent genome alignment would have todisambiguate. Using a seed size of 9 and w = 27, prorastAligner has a sensitivity of63% and PPV of 67%.3.5 DisussionWe have desribed an e�ient method for loal multiple alignment �ltration. The hainsof ungapped alignments that our �lter outputs may serve as diret input to multiplegenome alignment algorithms. The test results of our prototype implementation on



32Aession Length Rep Fm Alu (bp) Div, % Met Sn % Sp % T (s) Sw wAF435921 22 Kb 28 10 261 (69) 15.0 (6.4) Eul 96.3 99.4 1 - -pro 100 95.9 1 9 27Z15025 38 Kb 52 13 245 (85) 15.7 (5.7) Eul 98.6 96.7 4 - -pro 100 82.5 2 9 27AC034110 167 Kb 87 18 261 (72) 12.2 (5.9) Eul 93.5 95.2 14 - -pro 100 97.9 3 15 45AC010145 199 Kb 118 13 277 (55) 15.0 (5.6) Eul 85.2 93.7 32 - -pro 99.1 99.2 3 15 45Hs Chr 22 1 Mbp 404 32 252 (79) 15.2 (6.1) Eul 72.4 99.4 85 - -pro 98.3 97.3 20 15 45Table 2: Performane of prorastAlign and the Eulerian path approah on Alu repeats.Rep: total number of Alu elements; Fm: number of Alu families; Alu: average Alulength in bp (S.D.); Div: average Alu divergene (S.D.); Met: alignment method, Eul =Eulerian, pro = prorastAligner; Sn: sensitivity; Sp: spei�ity; T: ompute time; Sw:palindromi seed weight; w: max gap size. Alus were identi�ed by RepeatMasker (Jurkaet al., 2005). We report data for the fast version of the Eulerian path method as given byTable 1 of (Zhang and Waterman, 2005). Sensitivity and spei�ity of prorastAlignwas omputed as desribed in the text.Alu sequenes demonstrate improved sensitivity over de Bruijn �ltration. A promis-ing avenue of further researh will be to ouple our �ltration method with subsequentre�nement using banded dynami programming.The alignment soring sheme we use an rank alignments by information ontent,however a biologial interpretation of the sore remains di�ult. If a phylogeny andmodel of evolution for the sequenes were known a priori then a biologially relevantsoring sheme ould be used (Prakash and Tompa, 2005). Unfortunately, the phy-logeneti relationship for arbitrary loal alignments is rarely known, espeially amongrepetitive elements or gene families within a single genome and aross genomes. Itmay be possible to use simulation and MCMC methods to sore alignments where the



33phylogeny and model of evolution is unknown a priori, but doing so would be omputa-tionally prohibitive for our appliation.3.6 AknowledgmentsAn abridged version of this hapter appeared as Darling, Treangen, Zhang, Kuiken,Messeguer, and Perna (2006). AED designed the researh and implemented prorastAligner.TJT and AED designed the �ltration and soring algorithms and oauthored the manusript.LZ omputed optimal palindromi seed patterns.



34Chapter 4
Alignment of losely-related genomes
Genome alignment is a fundamentally di�erent task than sequene alignment. Thenature of genome evolution violates basi assumptions made by traditional alignmentmethods, suh as omplete ollinearity and onsisteny in the phylogeneti signal. Toompensate, a genome alignment method must inlude not just sequene alignment, buta method for deteting segmental homology as well, and it must be robust to varianein the phylogeneti signal.A seond distinguishing feature of genome alignment stems from the fat that genomesequenes are typially muh larger than the sequenes for whih dynami-programmingbased alignment methods were originally designed. The well-known Needleman-Wunshalgorithm to �nd the best global alignment of a pair of sequenes requires O(N2) om-pute time (Needleman and Wunsh, 1970). For sequenes as large as 10Kbp-100Kbpmodern omputational hardware an ompute the full sore matrix and trae bak theoptimal alignment path. However, baterial genome sequenes typially range in sizefrom 1Mbp to 10Mbp, while eukaryoti genomes an be anywhere between 1Mbp andseveral hundred gigabases in size. Computation of a full alignment sore matrix usingdynami programming for suh sequenes is too time-onsuming on modern omputehardware. Although dynami programming approahes that exploit parallel hardwarehave been used with some suess (Martins et al., 2001), an approah that is tratable



35on ommodity ompute hardware is strongly preferable.To e�etively trim the overall alignment searh spae without sari�ing alignmentquality, a heuristi ommonly referred to as anhored alignment (Delher et al., 1999)or banded dynami programming (Zhang et al., 2000) was devised. Anhored alignmenttypially begins by using a fast string-mathing method to �nd high-soring loal align-ments. It then restrits the omputation of sores in the dynami programming matrixto the regions around the high-soring loal alignments. Anhored alignment methodsoperate under the assumption that the optimal global alignment is very likely to in-lude the high-soring loal alignments. In general, anhoring heuristis yield qualityalignments in a fration of the ompute time otherwise neessary to ompute an optimalalignment (Ureta-Vidal et al., 2003). As suh, all modern genome alignment approahesuse anhoring heuristis.4.0.1 The Mauve algorithmOur development of a multiple genome alignment algorithm was motivated by the reentsequening of a group of nine enterobateria. At the time, existing anhored alignmentmethods were unable to ope with the substantial amount of genomi rearrangement andlateral gene transfer that these mirobes have experiened. Other aspets of the genomibiology of these mirobes suh as the presene of a small number of large-repetitive re-gions �gured prominently into our algorithm design. We refer to the presently desribedalignment algorithm as �Mauve.�When searhing for alignment anhors aross multiple genomes, problems arise if apartiular repetitive motif ours numerous times in eah sequene beause it beomesunlear whih ombination of regions to align. Our target data set of enteri genomes



36are known to have signi�ant repetitive regions suh as ribosomal RNA operons andprophages. For a repetitive element existing r times in eah of G genomes, there will be
rG possible alignment anhors, of whih at most r represent truly orthologous anhors.As more genomes are aligned, the number of possible anhors grows exponentially whilethe number of anhors that an be inluded in an alignment of orthologous sequenesremains onstant. Mauve avoids this problem by using approximate Multiple MaximalUnique Mathes (multi-MUMs) of some minimum length k as alignment anhors. Ap-proximate multi-MUMs are subsequenes shared by two or more genomes that mathaording to a seed pattern. As desribed in the previous hapter, a seed pattern spei�esa pattern of nuleotides that must math. For example 11*11*11* would speify a seedof length 9 and weight 6 where every nuleotide exept the third, sixth, and ninth mustmath (Ma et al., 2002b). Furthermore, at least one realization of the mathing seedpattern ontained in the mathing subsequene must our only one in those genomesto satisfy the uniqueness property. We refer to mathes whih satisfy these propertiesas approximate multi-MUMs beause they represent unique subsequenes whih matheah other approximately, tolerating a small amount of degeneray. Finally, the approxi-mate multi-MUMs must be bounded on either side by a region without any seed mathes.For the sake of brevity, we will simply use multi-MUMs to refer to approximate multi-MUMs unless otherwise noted. Beause using unique seeds redues anhoring sensitivityin onserved repetitive regions and regions that have undergone numerous nuleotidesubstitutions or indels, Mauve employs a reursive anhoring strategy that progressivelyredues k, searhing for smaller anhors in the remaining unmathed regions.The enterobaterial genomes are known to have undergone signi�ant genome re-arrangements as desribed in their genome papers. Algorithms used by other global



37multiple alignment systems anhor their alignments by seleting the highest soringollinear hain of loal alignments (Hohl et al., 2002, Bray and Pahter, 2003, Brudnoet al., 2003a). Suh methods prelude identi�ation of the rearrangements known toexist in our data set and many others. To suessfully align our target genomes, the an-hor seletion method should identify onsistent (ollinear) subsets of loal alignments touse as anhors while �ltering out unlikely loal alignments. Ideally, an algorithm wouldidentify a maximum-weight set of anhors suh that eah ollinear subset of anhorsmeets some minimum-weight riteria. This problem an be ast as the graph-theoretiMaximum Subgraph with Large Girth problem and thus an exat solution is omputa-tionally intratable (Raphael et al., 2004, Pevzner et al., 2004). Mauve uses a greedybreakpoint elimination algorithm to generate an approximate solution to the maximum-weight non-ollinear anhoring problem.To align the intervening regions of sequene between anhors our method employsthe progressive dynami programming approah of Clustal-W (Thompson et al., 1994).In progressive alignment, a phylogeneti guide tree spei�es the optimal progression ofsequenes to align when building the multiple alignment. Rather than realulating aguide tree during eah alignment of intervening regions, Mauve infers a single globalphylogeneti tree. Using a single average genome phylogeny not only saves omputetime but reent results show it may yield a more robust phylogeny (Rokas et al., 2003).The alignment algorithm an be summarized as follows:1. Find loal alignments (multi-MUMs)2. Use the loal alignments to alulate a phylogeneti guide tree



383. Selet a subset of the loal alignments to use as anhors�these anhors are parti-tioned into loally ollinear bloks (LCBs)4. Perform reursive anhoring to identify additional alignment anhors within andoutside eah LCB5. Perform a progressive alignment of eah LCB using the guide treeThe following setions give an overview of eah step in the alignment proess.Finding loal alignmentsMauve �nds multi-MUMs using a simple seed-and-extend hashing method similar tothat used by GRIL (Darling et al., 2004b). In addition to �nding mathing regions thatexist in all genomes, the algorithm identi�es mathes that exist in only a subset ofthe genomes being aligned. While the seed-and-extend algorithm has time omplexity
O(G2n + Gn logGn) where G is again the number of genomes and n average genomelength, it is very fast in pratie. Finding multi-MUMs typially onsumes less than aminute per baterial size genome, and 3-4 hours per mammalian genome on a standardworkstation omputer. Appendix B ontains a detailed desription of the mathingalgorithm, whih has been extended to approximate string mathing with gapped seedpatterns. The resulting loal-multiple alignments are similar in nature to the alignmentsprodued by prorastAligner, exept that internal gaps are not permitted.Formally we de�ne eah multi-MUM as a tuple 〈L, S1, ...SG〉 where L is the lengthof the multi-MUM, and Sj is the left-end position of the multi-MUM in the jth genomesequene. We denote the resulting set of multi-MUMs as M = {M1...MN}. The ithmulti-MUM in M is referred to as Mi. To refer to the length of Mi we use the notation
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Mi.L and similarly, we refer to the left end of Mi in the jth genome sequene usingthe notation Mi.Sj. If multi-MUM Mi inludes a region in the reverse omplementorientation in sequene j, we de�ne the sign of Mi.Sj to be negative. Finally, if multi-MUM Mi does not exist in sequene j, we de�ne Mi.Sj to be 0 � the left-most positionin any genome is 1 (or -1).Calulating a guide treeThe method desribed to �nd loal alignments di�ers from that used by GRIL in thatit an identify loal alignments in subsets of the genomes under study. Mauve exploitsthe information provided by subset multi-MUMs as a distane metri to onstrut aphylogeneti guide tree using Neighbor Joining (Saitou and Nei, 1987).Spei�ally, the ratio of base pairs shared between two genomes to their genomelength provides an estimate of sequene similarity. A log transformation onverts thesimilarity estimate to a distane value for the Neighbor Joining distane matrix. Beausemulti-MUMs an overlap eah other, alulating the similarity metri requires that over-laps among multi-MUMs are resolved suh that eah mathing residue ounts only one.To resolve an overlap, one math remains unhanged while the overlapping portion ofthe other math gets trimmed o� and its remaining portion an still be ounted. Mauveresolves overlaps in favor of the higher multipliity math, where multiplicity(Mi) isde�ned as the number of genomes for whih Mi.Sj 6= 0. If the multipliity of twooverlapping mathes is idential, the overlap is resolved in favor of the longer math.After eliminating overlaps in M , we an ount the number of mathing residues
Matchx,y between two genomes Gx and Gy as Matchx,y =

∑|M |
i=1(Mi.Sx)

0(Mi.Sy)
0Mi.L.The distane between genomes an then be alulated as dmatch(Gx, Gy) = − log Matchx,y

2min(|Gx|,|Gy |)
.



40This de�nition of distane is similar to that used by others for whole-genome phylogenyreonstrution (Henz et al., 2005).Beause the anhor seletion method desribed below operates only on multi-MUMswith multiplicity(Mi) = G, the guide tree is alulated prior to anhor seletion so thatit an take advantage of multi-MUMs with multiplicity(Mi) < G.Seleting a set of anhorsIn addition to loal alignments that are part of truly homologous regions, the set of multi-MUMs M may ontain spurious mathes arising due to random sequene similarity. Thisstep attempts to �lter out suh spurious mathes while determining the boundaries ofloally ollinear bloks (LCB). An LCB an be onsidered a onsistent subset of the loalalignments in M. Formally, an LCB is a sequene of loal alignments lcb ⊆ M, lcb =

{M1,M2, ...,M|lcb|} that satis�es a total ordering property suh that Mi.Sj ≤ Mi+1.Sjholds for all i, 1 ≤ i ≤ |lcb| and all j, 1 ≤ j ≤ G. For a given set of multi-MUMs,the minimum partitioning of M into ollinear bloks an be found through breakpointanalysis (Blanhette et al., 1997). Breakpoint analysis requires that mathing regionsexist in all genomes under study, so multi-MUMs with multipliity less than G areremoved from M before performing this step of the algorithm.Given a minimum weight riteriaMinimumWeight ≥ 0, Mauve uses a greedy break-point elimination algorithm to remove low-weight ollinear bloks of M. As part of step3 above, Mauve performs the following substeps repeatedly until all ollinear bloks in
M meet the minimum weight requirement:3.1 Determine a partitioning of M into ollinear bloks CB3.2 Calulate the weight, w(cbi) of eah ollinear blok cbi ∈ CB



413.3 Identify the minimum weight ollinear blok: let z = mincb∈CBw(cb)3.4 Stop if w(z) ≥MinimumWeight3.5 Delete the minimum weight ollinear blok: remove eah multi-MUM M ∈ zfrom M3.6Where breakpoints have been eliminated by removing z merge surrounding ollinearbloks and update their weights3.7 Go to step 3.3Here w(cb) is de�ned as ΣMi∈cbMi.L. Step 3.1 is idential to the method used byGRIL for partitioning M into ollinear subsets and is desribed in Appendix C.In order to provide a fair measure of weight, eah nuleotide in an LCB should ountonly one toward its weight. For this reason, breakpoint determination uses the set ofnon-overlapping multi-MUMs that remain after guide tree alulation. By default the
MinimumWeight parameter is set to 3k, where k is the seed length used during theinitial searh for multi-MUMs. We hose 3k as a default minimum weight beause it ap-pears to �lter the majority of spurious mathes in data sets we have evaluated. Figure 5illustrates the proess of identifying ollinear bloks of multi-MUMs and how removinga low-weight ollinear region an eliminate a breakpoint. The resulting ollinear setsof anhors delineate the LCBs that are used to guide the remainder of the alignmentproess.Reursive anhoring and gapped alignmentThe initial anhoring step may not be sensitive enough to detet the full region ofhomology within and surrounding the LCBs. In partiular, repetitive regions and regionswith frequent nuleotide substitutions are likely to lak su�ient anhors for omplete
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B)  Minimum partitioning into collinear blocks:

C)  After removing block 3:

A)  The initial set of matching regions:
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5Figure 5: A pitorial representation of greedy breakpoint elimination in 3 genomes. A)The algorithm begins with the initial set of loal alignments (multi-MUMs) representedas onneted bloks. Bloks below a genome's enter line are inverted relative to thereferene sequene. B) the mathes are partitioned into a minimum set of ollinearbloks. Eah sequene of identially-olored bloks represents a ollinear set of mathingregions. One onneting line is drawn per ollinear blok. Blok 3 (yellow) has a lowweight relative to other ollinear bloks. C) As low weight ollinear bloks are removed,adjaent ollinear bloks oalese into a single blok, potentially eliminating one or morebreakpoints. Gray regions within ollinear bloks are targeted by reursive anhoring.



43alignment. Using the existing anhors as a guide, two types of reursive anhoringare performed repeatedly. First, regions outside of LCBs are searhed to extend theboundaries of existing LCBs and identify new LCBs. In �gure 1C, this orresponds tosearhing the white regions outside LCBs. Seond, unanhored regions within LCBsare searhed for additional alignment anhors. This orresponds to searhing the greyregions within LCBs in Figure 1C.When searhing for additional anhors outside existing LCB boundaries, two fa-tors ontribute to Mauve �nding additional anhors. First, Mauve uses a smaller valueof the math seed size k. Seond, only the regions outside existing LCB boundariesare searhed, so regions not unique in the entire genome may be unique within re-gions outside LCBs. Not only an the range of existing LCBs be extended by searhingregions outside LCB boundaries, but new LCBs that meet the minimum weight re-quirement an be identi�ed as well. To perform the searh, the outside sequenes ineah genome are onatenated into a single sequene per genome. We refer to the setof onatenated sequenes as S and the onatenated sequene from the jth genomeas Sj. Multi-MUMs of minimum length k are found, where k = seed_size(S) − 2,and seed_size(S) = log2 (ΣG
j=1

length(Sj)

G
). Beause the left-end oordinates of eah newmulti-MUM are de�ned in terms of the onatenated sequene they must be transposedbak into the original oordinate system. Also, any mathes spanning two onatenatedsubsequenes must be split. The transposed multi-MUMs are added to M and iterativeremoval of low-weight ollinear subsets is performed as above. The proess of searh-ing regions outside LCBs is repeated until Σcs∈CSw(cs) remains the same during twosuessive iterations of the searh.In addition to missing anhors outside the boundaries of LCBs, the initial anhoring



44pass may have laked the sensitivity to �nd anhors in large regions within eah LCB.Beause progressive alignment requires relatively dense anhors (at least one anhorper 10Kbp of sequene), Mauve performs reursive anhoring on the intervening regionsbetween eah pair of existing anhors. Not only does this step anhor more divergentregions of sequene, it also loates anhors in onserved repeats beause many k-mersthat are not unique in the whole genome are likely to be unique within the interveningregions between existing anhors.Unlike other genome aligners whih perform a �xed number of reursive passes witha pre-determined sequene of anhor sizes, Mauve alulates a minimum anhor sizebased on the length of the intervening sequene and stops reursive anhoring wheneither no additional anhors are found or when the intervening region is shorter thana �xed length, defaulting to 200bp. During eah reursive anhor searh new LCBsmay be found, for example in the ase of loal rearrangements or in-plae inversion, andthese new LCBs must also meet the MinimumWeight requirement. For eah reursivesearh, k is alulated as above: k = seed_size(S) where S is the set of interveningsequenes, one per genome. By dynamially alulating the value of k, Mauve ensuresthat k is sized appropriately for the intervening region. Seleting k too large preventsdisovery of multi-MUMs in polymorphi regions, whereas seleting k too small inreasesthe likelihood that k-mers will not be unique in the intervening region.Armed with a omplete set of alignment anhors, Mauve performs a Clustal-W pro-gressive alignment using the genome guide tree alulated previously. The progressivealignment algorithm is exeuted one for eah pair of adjaent anhors in every LCB,alulating a global alignment over eah LCB. Tandem repeats less than 10Kbp in totallength are aligned during this phase. Regions larger than 10Kbp without an anhor are



45ignored.4.1 Alignment resultsThe Mauve genome alignment proedure results in a global alignment of eah loallyollinear blok that has sequene elements onserved among all the genomes under study.Nuleotides in any given genome are aligned only one to other genomes suggesting or-thology among aligned residues�Mauve makes no attempt to align paralagous regions.The remaining unaligned regions may be lineage-spei� sequene, or onserved or par-alagous repetitive regions and an be identi�ed as suh during subsequent proessingwith other tools. Large ( > 10Kbp) regions introdued to a subset of the genomes byhorizontal transfer are not aligned by Mauve beause they do not have alignment an-hors onserved among all sequenes. Both large and small regions existing in only asubset of the genomes and that also underwent loal rearrangement remain unaligned.Alignment of 9 enterobateriaWe applied Mauve to align the the 9 target enterobaterial genomes shown in Fig-ure 6. Previous studies of these genomes indiates they underwent signi�ant genomerearrangement, horizontal transfer, and other reombination (Perna et al., 2001, Denget al., 2003). Mauve onsumed 3 hours to align the 9 taxa on a 2.4GHz omputer with1GB of RAM. The alignment of the 9 taxa reveals 45 LCBs with a minimum weight of69. Figure 6 shows the guide tree generated for these speies. The visualization of thegenome rearrangement struture generated by the Mauve viewer is shown in Figure 7.We an quikly visually on�rm several known inversions suh as the O157:H7 EDL933
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E. coli K12 MG1655
4,639,221 bp

(Blattner et al. 1997)

S. flexneri 2A
4,607,203 bp

(Jin et al. 2002)

S. flexneri 2A 2457T
4,599,354 bp

(Wei et al. 2003) E. coli O157:H7 EDL933
5,524,977 bp

(Perna et al. 2001)

E. coli O157:H7 VT2 Sakai
5,498,450 bp

(Hayashi et al. 2001)

E. coli CFT073
5,231,428 bp

(Welch et al. 2002)

S. enterica Typhimurium LT2
4,857,432 bp

(McClelland et al. 2001)

S. enterica Typhi Ty2
4,791,961 bp

(Deng et al. 2003)

S. enterica Typhi CT18
4,809,037 bp

(Parkhill et al. 2001)

Figure 6: An unrooted phylogeneti tree relating nine enteri genomes. The tree is aphylogeneti guide tree alulated using Neighbor-Joining on a genome-ontent distanemetri.
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E. coli K12 MG1655

E. coli O157:H7 EDL933

E. coli O157:H7 VT-2 Sakai

E. coli CFT073

Shigella flexneri 2a

Shigella flexneri 2a 2457T

Salmonella enterica typhi CT18

Salmonella enterica typhi Ty2

Salmonella enterica Typhimurium LT2Figure 7: Mauve visualization of an alignment of the 9 target enterobateria shown inFigure 6. Eah genome sequene is plotted along a horizontal trak. Loally ollinearbloks in eah genome (regions without rearrangements) are surrounded by a oloredbox and onneted to the homologous region in eah of the other genome sequenes.Bloks below a genome's enter line are in the reverse omplement orientation relativeto the referene genome. Within eah loally ollinear blok, a similarity plot showsthe average sequene onservation in that region. The Shigella and Salmonella genomeshave undergone more genome rearrangements than that of E. oli, likely due to thepresene of spei� mobile geneti elements.



48inversion relative to K-12 (Perna et al., 2001) and the large inversion about the originof repliation among the S. enteria serovars Typhi CT18 and Ty2 (Deng et al., 2003).We proeeded to extrat onserved bakbone sequene from the alignment. Again,bakbone is de�ned as regions of the alignment ontaining more than 50 gap-free olumnswithout strethes of 50 or more onseutive gaps in any single genome sequene. Underthis de�nition, the 9 enterobateria have 2.86Mbp of onserved bakbone sequene bro-ken into 1252 bakbone segments. Aross the bakbone the level of nuleotide identity ishigh, above 95% within eah Esherihia and Salmonella genus, and about 70% arossthe two genuses (data not shown).4.1.1 Alignment of mammalian genomesWe applied the Mauve genome alignment system to perform a whole-genome align-ment of the mouse, rat, and human genomes. The RepeatMasked assemblies of human(NCBI 35), mouse (NCBI 33), and rat (RGSC 3.4) were searhed for unique 3-wayseed mathes on the forward and reverse strands using the palindromi seed pattern:11111*111*11*1*11*111*11111. This seed pattern is the most sensitive pattern atweight 21 for sequenes with 65%-75% identity, as desribed in Chapter 3. Initial seedmathes were maximally extended in eah diretion until the seed pattern no longermathed at any overlapping position. A total of 922,081 ungapped 3-way alignmentsontaining unique sequene resulted. The initial set of 3-way mathes gave rise to 567,782LCBs, to whih we applied greedy breakpoint elimination to remove all LCBs up to aminimum weight of 55, yielding a baseline set of 520,423 3-way mathes that ompose6483 LCBs. The omplete analysis onsumed approximately 24 hours on a 1.6GHzLinux PC with 2.5GB memory and two hard disks used for an external-sort of the string
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Figure 8: Mauve visualization of loally ollinear bloks identi�ed between onatenatedhromosomes of the mouse, rat, and human genomes. Eah of the 1,251 bloks shownhere have a minimum weight of 90. Red vertial bars demarate interhromosomalboundaries. The Mauve rearrangement viewer enables users to interatively zoom inon regions of interest and examine the loal rearrangement struture. The omputationonsumed approximately 24 hours on a 1.6GHz workstation with 2.5GB memory.mathing data strutures.We further applied greedy breakpoint elimination to the baseline set of 6,483 LCBs,reording the observed genomi permutation at eah suessively higher LCB weight upto a minimum weight of 100,000. At minimum weight 97,673 (the last weight before100,000), there are 75 3-way LCBs among the mouse, rat, and human genomes. Atweights larger than 500, the LCB weight roughly orresponds to the overall hromosomallength of an LCB, with the average LCB hromosomal length being 100-1000x the LCBweight. A visualization of the overall mammalian LCB struture is shown in Figure 8.Complete 3-way mammalian genome alignments based on the initial set of 6,483 LCBswere omputed using 24 hours of parallel ompute time on a 96-CPU Orion Desksideluster. The results are available from http://gel.ahabs.wis.edu/~koadman/orion_results



504.2 DisussionWith the advent of genome sequening a new type of sequene alignment problem, thatof whole genome omparison, has emerged. Early approahes to genome alignment weredesigned to takle dramatially inreased sequene lengths, but did not onsider the ad-ditional types of evolutionary events observed on the genome sale. Genome rearrange-ments, horizontal transfer, and dupliation obfusate orthology. As genomes ontinue tobe sequened, automati and aurate identi�ation of genome rearrangements beomesinreasingly important, espeially as high levels of rearrangement have been observedamong both eukaryotes and prokaryotes (Pevzner and Tesler, 2003b, Lefebvre et al.,2003, Pevzner and Tesler, 2003a).The Mauve genome alignment method represents a �rst step toward multiple genomeomparison in the presene of large-sale evolutionary events. It is apable of aligningonserved regions in the presene of genome rearrangement, and appears to sale ef-�iently to long genomes. However, our experiene with Mauve learly indiates thatmany hallenges remain in genome alignment. A more sensitive loal alignment teh-nique would permit our method to be applied to more distantly related organisms. Amethod for determining breakpoints with loal alignments existing in a subset of thegenomes would failitate anhored alignment of the large lineage-spei� regions ur-rently missed.Some organisms are known to have small, loal sequene rearrangements suh asreordering of protein domains in oding regions. In suh ases, the proximity of therearrangement to neighboring homologous sequene should learly be onsidered. Othertypes of rearrangement do not exhibit loality bias: symmetri inversions about the



51origin and terminus of repliation and rearrangements mediated by mobile elements areommon in prokaryotes and an move sequene to distant parts of the genome. A moresophistiated rearrangement soring method may attempt to sore a partiular pattern ofanhors based on the sequene of rearrangement events and reombination mehanismssuggested by that pattern of anhors.4.3 AknowledgmentsPortions of this hapter appeared as Darling, Mau, Blattner, and Perna (2004a).



52Chapter 5
Alignment of genomes withlineage-spei� ontent
5.1 IntrodutionAdvanes in genome sequening tehnology have made large-sale sequening of miro-bial genomes not only possible, but relatively a�ordable (Margulies et al., 2005, Shendureet al., 2005). It has been estimated that urrent genome sequenes represent less than1% of global mirobial speies diversity (Tettelin et al., 2005). Studies aiming to ata-log environmental sequene diversity have already produed initial data (Venter et al.,2004, Tringe et al., 2005), and more are expeted to follow. Genomi sequene ompar-ison stands to provide a framework for understanding the biology of newly sequenedorganisms through omparison to model organisms.In the ontext of omparative genomis, whole genome alignments solve an importantproblem. While it may be possible to assess the gene ontent of an organism using gene-based reiproal-best-hit BLAST methods, suh approahes are error-prone (Koski andGolding, 2001), neglet important non-geni ontent and perhaps more importantly,frequently neglet omparison of overall genome struture. Genome alignment, on theother hand, provides a framework for simultaneous omparison of geni and non-geni



53Organism Genome size w/Plasmids AessionE. oli K12 MG1655 4654221 U00096E. oli O157:H7 EDL933 5623806 AE005174E. oli O157:H7 Sakai 5594477 BA000007E. oli HS 4643538 AAJY00000000E. oli E24377A 4980187 AAJZ00000000E. oli CFT073 5231428 AE014075E. oli UTI89 5179971 CP000243Shigella boydii Sb227 4646520 CP000036Shigella �exneri 2457T 4988914 AE014073Shigella �exneri 301 4828821 AE005674Shigella dysenteriae Sd197 4551958 CP000034Shigella sonnei Ss046 5039661 CP000038Salmonella enteria Choleraesius B67 4944000 AE017220Salmonella enteria Typhi Ty2 4791961 AE014613Salmonella enteria Typhi CT18 5133713 AL513382Salmonella typhimurium LT2 4951371 AE006468Salmonella paratyphi A ATCC9150 4585229 CP000026Yersinia pestis Antiqua 4879836 CP000308Yersinia pestis Nepal 516 4646286 CP000305Yersinia pestis 91001 4803217 AE017042Yersinia pestis CO92 4829855 AL590842Yersinia pestis KIM 4781914 AE009952Yersinia pseudotuberulosis IP31758 4721828 AAKT00000000Yersinia pseudotuberulosis IP32953 4840899 BX936398Erwinia hrysanthemi 3937 4922802 -Erwinia aratovora SCRI1043 5064019 -Table 3: Twenty-�ve publily-available, �nished enteri genomes sequenes form ourtarget set for multiple genome alignment.ontent and genome struture. Genome alignment faes a hallenge, however, as mosturrent methods do not aount for large-sale mutational fores that disrupt gene order,reate paralogs, and inorporate novel ontent into genomi sequenes. Furthermore, ofthe genome alignment methods that do exist, few have been integrated into a singleoherent analysis methodology, limiting their widespread use.In the present study, we fous on a large set of enteri bateria (listed in Table 3)whose genomes have proven unalignable using previous tehniques. This group inludes



54mirobes whose rates and patterns of mutation exhibit substantial variability, as shownin Figure 9. Spei�ally, the losely related members of the Yersinia genus appear tohave unstable hromosome struture (Deng et al., 2002), showing evidene for numerousrearrangements sine their divergene 1,500�20,000 years ago (Ahtman et al., 1999).At the opposite extreme, estimates plae the speiation of E. oli and Salmonella at120�160 million years ago (Ohman and Wilson, 1987), but ross-speies omparisonsshow little or no hange in genome organization among E. oli and Salmonella. Thus,rates of rearrangement in enteri bateria are lineage-spei� and an vary substantially.In addition to genome rearrangement, the genomes of enteri bateria also undergosubstantial gain and loss of geneti material, whih we olletively refer to as gene �ux.Within the speies E. oli, pairwise omparisons of individual isolates indiate that eahisolate may ontain as muh as 20% novel gene ontent relative to the other (Pernaet al., 2001). The large amount of novel ontent in E. oli isolates implies that eitherthe enanestor of E. oli had a relatively large genome whih has undergone lineage-spei� redutions, or that E. oli rapidly aquires novel ontent from the environment.When designing a system for multiple genome alignment, the observed heterotahyin rates of genomi rearrangement and gene �ux beomes an important onsideration.An alignment soring sheme that sales a rearrangement penalty based on nuleotidedivergene among taxa would not aurately apture the patterns observed in our data.We desribe a new genome alignment method that diretly addresses heterotahy inthe rates of genomi rearrangement and gene �ux. The new method extends previousmethods for progressive genome alignment (Brudno et al., 2003a, Bray and Pahter,2003) by using an anhor seletion sheme that applies a breakpoint penalty to a-ount for rearrangement. The soring method adjusts the breakpoint penalty based
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Figure 9: Pairwise genome alignments of enteri bateria reveal the level of nuleotideidentity in onserved segments, average fration of the genome ontained in onservedsegments, and number of gene-order breakpoints among eah pair. Within the genusYersinia little nuleotide-level divergene exists, but a substantial amount of genomirearrangement has ourred (rightmost blue points). For easier visualization, the muta-tion spae has been split into three foused regions of nuleotide identity whih ontainall pairwise omparisons.on pairwise estimates of breakpoint distane and genome onservation distane. Weapply a random-walk statisti to the resulting multiple genome alignments to distin-guish segments onserved among subsets of the taxa from segments onserved amongall taxa and from novel sequene. We implement the new alignment method in afreely available, open-soure software pakage alled Progressive Mauve, available fromhttp://gel.ahabs.wis.edu/mauve5.2 MethodsThe Progressive Mauve alignment method onsists of �ve basi steps: (1) loal-multiplealignment of highly similar unique subsequenes, (2) onstrution of breakpoint and on-servation distane matries and a onservation-based guide tree, (3) progressive anhoredalignment, (4) iterative re�nement within ollinear segments, and (5) identi�ation of



56segments onserved among two or more genomes using random-walk statistis and tran-sitive homology relationships. We desribe eah of these steps in turn below.Notation and assumptionsOur genome alignment algorithm takes as input a set of G genome sequenes g1, g2, · · · ∈

G. We denote the length of genome i as |gi|. Our method omputes alignments along aguide tree Ψ, and we use n to denote an arbitrary node in Ψ. As Ψ is a rooted bifuratingtree, an internal node n always has two hildren, whih we refer to as n.c1 and n.c2 orsimply c1 and c2 when n is implied by ontext. Furthermore, we de�ne the set of leafnodes at or below n as Leaf(n) and similarly, the leaf nodes at or below the hildren of
n as Leaf(c1) and Leaf(c2). The two sets of leaf nodes on c1 and c2 are disjoint, andeah leaf node represents a genome from the set of input genomes G. Finally, we usethe funtion Des(n) to refer to all desendant nodes at or below n.Various default parameter settings in our software implementation depend on theaverage length of input genome sequenes. We de�ne a funtion to ompute averagegenome length as:

AvgSize(G) =
∑

g∈G

|g|

G5.2.1 Loal multiple alignmentWe perform loal-multiple alignment using a variation of the tehnique desribed inAppendix B. The new seed-and-extend string mathing method seeds loal multiplealignments in unique regions of sequene that math in two or more genomes, just likethe previous method. If a seed mathes in three or more genomes but is unique inonly a subset of those genomes, the new method extends the seed among the subset in



57whih it is unique. The previous approah would have ignored suh seed mathes. Wefurther improve the new method to use palindromi spaed seeds Darling et al. (2006),allowing for some degeneray in the mathing regions. Thus, the resulting loal multiplealignments an no longer be onsidered multi-MUMs, as they may ontain mismathes(but no indels). By default, we use a seed with weight equal to log2(AvgSize(G)/1.5.For enteri genomes, the default seed weight is 15, with length 23. We refer to the initialset of loal multiple alignments generated in this step as Minitial.5.2.2 Pairwise distane matrix and guide tree onstrutionWe onstrut two distane matries, one whih estimates the breakpoint distane amongeah pair of genomes, and a seond whih estimates the amount of non-homologoussequene among any pair of genomes (onservation distane). We refer to the breakpointdistane matrix as B and the onservation distane matrix as C. Both areG×Gmatrieswith values in the range [0, 1]. We ompute the onservation distane in the same manneras previously reported Darling et al. (2004a). Brie�y, the onservation distane for a pairof genomes is the average fration of eah genome overed by pairwise loal alignments,subtrated from one to form a distane. The preomputed loal multiple alignments areprojeted to pairwise alignments for the purpose of omputing onservation distane.The breakpoint distane between a pair of genomes Gi, Gj is simply the numberof breakpoints in homologous gene order between that pair of genomes. Sine we donot know a priori whih segments of Gi and Gj are homologous we must estimate thebreakpoint distane through genome alignment. Without already knowing the relativeamounts of nuleotide divergene, gene �ux, and genomi rearrangement among Gi and
Gj, it is di�ult to pik a single breakpoint penalty for greedy breakpoint elimination
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Figure 10: The hange in the number of LCBs as minimum soring LCB are suessivelyremoved. Pairwise omparisons of E. oli K12 MG1655 with several other enterobateriaare shown. A pronouned downward shift in the number of LCBs ours as the minimumsore surpasses 2000. For this data set we use a minimum LCB sore of 100,000 to providea onservative estimate of breakpoint distane.(desribed in Chapter 4) that provides preise estimates of the breakpoint distane forany Gi and Gj. We use the anhor soring metris desribed below to ompute LCBanhor sores on pairwise mathes among eah pair of Gi and Gj. However, we observethat small, usually spurious, mathes onstitute the large number of low-soring LCBspresent in most pairwise omparisons, whereas most of the genome (and mathes) usuallyreside in a small number of high soring LCBs.Figure 10 illustrates the number of LCBs as a funtion of the minimum LCB soreremaining during appliation of greedy breakpoint elimination to enteri genome se-quenes. Manual validation of genome alignments indiates that only orret pairwiseLCBs remain at minimum LCB sores ranging between 30,000-50,000. Furthermore,it appears that a onservative soring threshold of 100,000 still aptures the relativenumber breakpoints among pairwise omparison. Sine we use estimated breakpointdistanes as saling fators for subsequent alignment soring, we do not need to know



59the absolute breakpoint distane; a relative estimate of rearrangement rate su�es.The software implementation of our method takes the default minimum LCB sore fordistane estimation to be: 4500 log2(
∑

g∈G

|g|
G

) whih equates to roughly 100,000 forgenomes averaging 5Mbp in size.The breakpoint distane is the total number of pairwise LCBs among Gi and Gj,minus 1, however Bi,j must be a value between 0 and 1. Referring to the estimatedbreakpoint distane between Gi and Gj as di,j, we arrive at values for B through thefollowing normalization:
MaxDist(G) = max(

AvgSize(G)

50000
, max
Ga,Gb∈G

da,b)

Bi,j =
di,j

2MaxDist(G)Here, AvgSize(G) omputes the average genome size, while MaxDist(G) omputesthe maximum breakpoint distane. Rather than stritly using the maximum observedbreakpoint distane, we estimate a "high" rate of rearrangement to be 20 breakpointsper megabase of sequene and use the maximum of the "high" estimate and the ob-served estimates as our normalizing distane. Without this adjustment, the values of
B would vary onsiderably when analyzing only stable genomes versus a ombinationof rearranged and stable genomes. Finally, we multiply MaxDist(G) by two to ensurethat distanes never exeed 0.5, a value whih provides substantial saling of the soringfuntions desribed below.We ompute the topology and branh lengths of the guide tree Ψ using neighbor-joining (Saitou and Nei, 1987) on the pairwise onservation distane matrix. Our on-servation distane measure is not an additive distane, thus the guide tree may have



60negative branh lengths. In general, negative lengths are inonsequential to the align-ment proedure.5.2.3 Objetive soresLike many sequene alignment methods, Progressive Mauve seeks to optimize a well-de�ned objetive sore whih has been designed to assign higher values to better align-ments. For performing gapped alignments of ollinear segments, we apply the sum-of-pairs sore with a�ne gap penalties (Thompson et al., 1994, Feng and Doolittle, 1987).For seleting the ollinear hains of loal alignments that serve as genome alignmentanhors we apply a di�erent objetive sore whih we refer to as the the sum-of-pairsanhoring sore. We also desribe a variation on the sum-of-pairs anhoring sore whihan aount for the genome arrangement inferred at internal nodes of the guide tree.Loal alignment soringDuring the ourse of genome alignment, our method attempts to disriminate betweenloal alignments that suggest orthology (or xenology) and alignments of regions withrandom similarity or paralogy. Loal alignments believed to be in orthologous (or xenol-ogous) regions ultimately beome anhors for the whole-genome alignment. We soreloal alignments using an anhor soring sheme designed to assign high sores to well-onserved regions that are unique in eah genome.Prior to beginning genome alignment, we ompute a uniqueness value for eah po-sition of every input genome. For a given position in Gi, the uniqueness is alulatedas 1 over the number of genome-wide mathes to the spaed seed pattern at that site.The uniqueness of eah site always ranges between 1 and 0, with highly repetitive sites



61having uniqueness values lose to 0. We refer to the uniqueness value of site x in Gi as
Ui,x.For a pairwise loal alignmentM among genomes Gi and Gj, we ompute the averageuniqueness of M using only sites in Gi and Gj that are aligned to eah other in M .Skipping unaligned sites prevents large internal gaps from in�uening the uniqueness of
M . De�ne an aligned olumn ofM as a tuple col = 〈a, b〉 ontaining the aligned sequeneoordinates in Gi and Gj, and refer to oordinates as col.a and col.b, respetively. If wede�ne the set of all aligned olumns inM as cols(M), then the average uniqueness soreof M an be written as

Uniqueness(M) =
∑

col∈cols(M)

Ui,col.a + Uj,col.b

2|cols(M)|We sore the quality of a given pairwise loal alignment M using the HOXD nu-leotide substitution matrix (Chiaromonte et al., 2002). The HOXD matrix has beendemonstrated to provide good disrimination between homologous and non-homologoussequene in a variety of organisms, even at high levels of sequene divergene. We usepreviously derived a�ne gap penalties, -400 for a gap open and -35 for a gap exten-sion (Shwartz et al., 2003). We refer to the pairwise a�ne gap and substitution soreas PairScore(M).The total anhor sore of M is omputed as
AnchorScore(M) = PairScore(M) · Uniqueness(M).LCB soringAlthough in general an LCB may refer to a ollinear segment of two or more genomes,the LCBs onsidered during our progressive alignment proedure are always pairwise.



62We alulate the anhor sore of an LCB as the sum of its onstituent pairwise loalalignment sores:
LcbAnchorScore(L) =

∑

M∈L

AnchorScore(M)The weighted breakpoint penaltyAs genomes diverge they may undergo genomi rearrangement. As a result, we mustidentify alignment anhors that our in a di�erent order and orientation in eah genome.To ompliate matters, spurious mathes and mathes among paralogs also frequentlyour in a di�erent order and orientation in eah genome. To ensure aurate alignmentanhoring we would like to �lter out any loal alignments that arise due to paralogoussegmental homology, in addition to any low-soring spurious mathes.When omputing LCB struture among a pair of extant genomes, we apply a break-point penalty designed to aount for the expeted amount of genomi rearrangementand gene �ux that has ourred sine their divergene. We de�ne a matrix of breakpointpenalties among eah pair of genomes as
Wi,j = wBi,jCi,jwhere w is a user-de�ned minimum LCB sore. Empirial evidene indiates that avalue of 30,000 gives high-quality estimates of LCB struture for our target data set (seeFigure 10, full data not shown). The software implementation sets w = 1500AvgSize(G)by default, the value of whih is approximately 30,000 for our enteri genomes.



63The sum-of-pairs anhoring soreGiven a node n and set of pairwise LCBs among eah ross-pair of the genomes at orbelow nodes n.c1 and n.c2, we ompute the sum-of-pairs anhoring sore as
SPAnchorScore(n,L) =

∑

Gi∈Leaf(c1)

∑

Gj∈Leaf(c2)

(|Li,j| − 1)Wi,j

∑

l∈Li,j

LcbAnchorScore(l)The sum-of-pairs + anestral anhoring soreA seond, optional LCB soring sheme used by our method is the SP extant+anestralsore. This soring sheme has been designed to also sore pairwise LCB struturebetween extant genomes and the sequene arrangement inferred at internal nodes of thealignment tree.When omputing LCB struture for a node n in the alignment tree we apply aweighted breakpoint penalty An whih is an average penalty among ross-pairs of de-sendant genomes. Spei�ally, the values of A for eah internal node n are de�nedas
An =

∑

Gi∈Leaf(c1)

∑

Gj∈Leaf(c2)

Wi,j

|Leaf(c1)||Leaf(c2)|When n has only two leaf-node desendants, representing genomes Gi and Gj, An isidential to Wi,j. To arrive at the SP extant+anestral anhor sore, we then modifythe original SP anhoring sore to inlude sore terms for internal nodes below n:
SPAncestralAnchorScore(n) =

∑

Gi∈Des(c1)

∑

Gj∈Des(c2)

(|Li,j|−1)Ai,j

∑

l∈Li,j

LcbAnchorScore(l)
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65is trivial and math oordinates remain unhanged.4. Eliminate overlaps and resolve inonsistent alignments among mathes in Mn asdesribed in Darling et al. (2004a).5. Translate mathes in Mn bak down the tree to onstrut a set of loal-multiplealignments among Des(n), whih we refer to as Mt. For every pairwise math in
Mn a orresponding loal-multiple alignment among Des(n) exists in Mt.6. For eah ross-pair of genomes Gi, Gj in Leaf(c1) and Leaf(c2), projet the loal-multiple alignments in Mt to their pairwise oordinates. Refer to the resulting setof projeted mathes as Mi,j. Eah projeted math retains a pointer to theoriginal anestral math in Mn from whih it ame.7. Partition eah set of pairwise projeted mathes Mi,j into a set of pairwise LoallyCollinear Bloks Li,j8. Compute the urrent SP anhor sore for n as SPAnchorScore(n,L)9. Perform sum-of-pairs greedy breakpoint elimination:9.1. Remove the pairwise LCB that results in the largest improvement in
SPAnchorScore(n,L). When removing the LCB, remove all pairwise projetedmathes in the LCB, and remove the orresponding mathes in Mn and any otherassoiated projetions in Mi,j.9.2. Removing the LCB may allow neighboring LCBs to oalese. Reomputesores for all neighboring LCBs.9.3. Compute the new SP anhoring sore SPAnchorScore(n,L). If the newsore is larger than the previous sore, return to step 9.1, otherwise ontinue tostep 10.



6610. Pik arbitrary endpoints for LCBs in the breakpoint regions between LCBs (Fig-ure 11 panel e).11. Chek whether the �nal SP anhoring sore has improved. If not, go to step 14.12. Reursive anhor searh. Searh for additional anhors in large gaps betweenexisting anhors and outside LCBs. Figure 11, panels a, b, and e, f illustrate thereursive anhor searh inside and outside LCBs, respetively.13. Return to step 3. Use any mathes identi�ed by the reursive anhor searh, inaddition to the mathes that remained after greedy breakpoint elimination as inputto Step 3.14. Pik an arbitrary gap path in unanhored regions (Figure 11 panels  and g).15. Perform an anhored pro�le-pro�le alignment using MUSCLE (Edgar, 2004) TheMUSCLE soure ode was modi�ed to support anhored pro�le-pro�le alignment.To limit ompute time, we enfore a maximum distane between anhors of 20,000nt.When we enounter a gap larger than 20,000nt between anhors, we add an anhorpoint on the gap-path midway between the nearest existing anhor points.16. If nodes remain to be aligned then return to Step 1, otherwise end progressivealignment.An example of sum-of-pairs greedy breakpoint eliminationIterative re�nementWe subjet eah aligned loally ollinear blok to an iterative re�nement proess us-ing the MUSCLE sequene alignment tool. To redue overall exeution time, we usewindow-based iterative re�nement to restrit the total searh spae. In window-based
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Initial local-multiple alignments among extant genomes 1,2,3, and 4.

A) Visualized with respect to each genome sequence

B) Visualized as a directed multigraph with a path representing the order in each genome
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Figure 12: Panel A: An initial set of loal multiple alignments has been alulatedamong four genomes, labeled 1�4. The hosen alignment guide tree is shown at left.Eah genome sequene is laid out horizontally and segments ontained in loal-multiplealignments are depited as bloks linked between genomes. Bloks below a genome'senter line math the reverse omplement strand in that genome. For simpliity weassume that pairwise alignment sores are equal for all pairs of genomes and assumethe sores given above. Panel B: The loal multiple alignments in A indue a diretedmultigraph where eah loal multiple alignment is a node and edges onnet alignmentsthat are adjaent in eah genome. A path from soure to sink vertex exists for eahof genomes 1�4, with edges labeled aordingly. Traversal of a given genome's pathvisits nodes in the order of the orresponding loal-multiple alignments in that genome.Negative edge labels indiate a swith in the strand mathed by adjaent alignments.
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Figure 13: Panel A: The full graph shown in Figure 12 is projeted to the subgraphontaining only edges labeled 1 and 2. We perform greedy breakpoint elimination onthis pairwise projetion. Panel B: Pairwise LCBs among genomes 1 and 2 are identi�edas nodes onneted by �simple� paths, i.e. paths with edge labels 1,2, or singleton nodeswhih have edges labeled with both 1 and 2 but are not part of any simple paths.A yle exists in the subgraph among nodes C, D, E, and F, and orresponds to aputative genome rearrangement between genomes 1 and 2. The yle partitions theloal multiple alignments into three LCBs: {AB}, {CD}, and {E} with sores 10,000,10,000, and 1,000, respetively. F does not ontribute to any LCB sine it doesn'tmath in both 1 and 2. Eah LCB sore is equal to the sum of its onstituent alignmentsores. Panel C: Pairwise anhoring of genomes 1 and 2. The anhoring sore penalizesthe initial anhor on�guration for two breakpoints, worth 1,500 eah, for a total anhorsore of 10,000+10,000+1,000-2x1,500 = 18,000. We then onsider the e�et of removingeah LCB on the anhoring sore. Removal of {AB} would eliminate a single breakpointand result in a total anhor sore of 9,500 beause A and B no longer ontribute 5,000eah to the sore. Removal of {CD} would eliminate a single breakpoint, also giving atotal anhor sore of 9,500. Removal of {E} would eliminate two breakpoints and givea total anhor sore of 18,500. We remove {E} beause it improves the anhor sorefrom 18,000 to 18,500. We reate the onsensus alignment path shown in blue whihorresponds to the anestor of 1 and 2 in the guide tree. The removal of E orrespondsto splitting the node into separate nodes per-genome (labeled E1 and E2) in the blueonsensus path.
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Figure 14: Panel A: Pairwise anhoring of genomes 3 and 4. The full graph shownin Figure 12 is projeted to the subgraph ontaining only edges labeled 4 and 5. Theinversion of mathes G, H, and I in genome 4 indues three pairwise LCBs: {A}, {GHI},and {FBD}, soring 5,000, 3,000, and 11,000, respetively. Eah of the two breakpointsome with a penalty of 1,500, for a total anhoring sore of 16,000. Removing any ofthe three LCBs fails to inrease the anhoring sore, so the anhors remain idential tothe initial set of loal alignments between genomes 3 and 4.re�nement, the alignment is divided into non-overlapping windows, eah of whih isre�ned separately. Figure 11 panels d and h show window-based iterative re�nementfor a given alignment tree node n. Regions aligned with few gaps may be re�ned inwindows of 500 or 200 alignment olumns. When a region of the existing alignment isambiguous, ontaining many gaps, we selet a window size of 20,000 alignment olumns.The relatively large window size gives MUSCLE greater latitude in shifting gaps to iden-tify optimal the alignment. These window sizes were hosen empirially to provide areasonable trade-o� between speed and auray (data not shown).Identi�ation of segments onserved among two or more genomesThe MUSCLE global alignment program dutifully �nds the highest-soring alignmentbetween alignment anhors, regardless of whether the intervening region ontains homol-ogous sequene. Oasionally non-homologous regions beome aligned as a side e�etof fored global alignment in regions between anhors. In order to identify and remove
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Anchoring of genomes 1, 2, 3, and 4
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Figure 16: To arrive at a �nal anhoring for genomes 1, 2, 3, and 4, we apply sum-of-pairs greedy breakpoint elimination to the pairwise projetions shown in Figure 15.The projetions 1,3 and 1,4 have no breakpoints, and thus no breakpoint eliminationan be applied. Projetions 2,3 and 3,4 eah have four LCBs. We ompute the total SPanhoring sore as the sum of eah pairwise anhoring sore: 15,000 + 15,000 + 11,500 +11,500 = 53,000. We then evaluate whether removal of any pairwise LCB would improvethe total SP anhoring sore. We arbitrarily hoose to onsider LCBs from the 2,3 pro-jetion �rst. Removing {A} would result in a redution from four to three breakpoints,and a loss of the 5,000 points ontributed by {A} to the projetion of 2,3. Beause weimpose transitive homology, we must also remove {A} from the pairwise projetions 1,3and 1,4 and 2,4 if we remove it from 2,3. Thus the total SP anhoring sore with {A}removed beomes 10,000+10,000+8,000+8,000=36,000. We do not remove {A} beausethe SP anhoring sore would derease. Removing {D} has the same e�et on the SPanhoring sore as removal of {A}. Next, we evaluate removal of the LCB {F}. Removalof {F} would eliminate the yle in the projetion of 2,3, resulting in a single pairwiseLCB with sore 15,000. Again, if {F} is removed from 2,3 it must also be removedfrom all other pairwise projetions, namely 2,4 (but not 3,4). The total SP anhoringsore after removing {F} would be 15,000+15,000+15,000+15,000=60,000. Finally, weonsider removal of {B} from projetion 2,3. Removal of {B} also eliminates the yle in2,3 and would give a total SP anhoring sore of 15,000+15,000+11,000+11,000=52,000.Beause projetions 2,3 and 2,4 have idential LCBs, we need not onsider the sore im-pat of removing LCBs from 2,4. At this point, we remove the LCB whih o�ers thelargest inrease in the SP anhoring sore: {F}. After removal of {F}, the SP anhoringsore an no longer be improved and we arrive at the �nal anhoring depited above asa gold-olored path. Notie that F does not form an anhor among genomes 2,3 and 2,4,but it remains a valid pairwise anhor among 3,4 and is inluded in the golden path.



72aligned, non-homologous regions we apply random-walk statistis to the HOXD substi-tution and a�ne gap sore (Chiaromonte et al., 2002, Shwartz et al., 2003). Nuleotidesubstitution soring matries are log-ratio estimates of the probability that a pair ofnuleotides are homologous, versus the probability they are non-homologous. The sub-stitution and a�ne gap sore are designed to assign high sores to homologous regionsand low sores to non-homologous regions. Random walk statistis require a sore fun-tion that will be negative on average, however, aligned LCBs typially ontain highsequene identity, so the substitution sore is a very large positive number on average.Thus, we invert the log ratios and multiply the a�ne gap penalties by −1, whih auseshomologous LCBs to have a negative sore on average. We an then apply random walkstatistis to identify high-soring segments indiative of a non-homologous region.We performed simulation studies to selet an appropriate signi�ane threshold forrandom-walk exursions. Spei�ally, we simulated moleular evolution among a pairof sequenes under the HKY85 model with 0.75 substitutions per site, Ts/Tv ratio=4,gamma-distributed rate heterogeneity (shape=1), and 0.05 indels per site with lengthssampled from a Poisson with intensity 3. These parameters were seleted to be ator beyond the outer limits of sequene alignable by our method. We performed 200simulations of sequenes with average length 1,000,000 nt. Soring the simulations yields42,429,635 exursions whih indiate a 99.9% threshold sore of 2727 in the extreme valuedistribution, and a 99.99% threshold of 4076.We identify boundaries of non-homologous sequene as regions where the sore of arandom-walk exursion exeeds our sore threshold. Given the boundaries of pairwisesegments likely to be non-homologous, we ompute the omplementary boundaries ofpairwise segments likely to be homologous. We then apply the notion of transitive



73homology (Szklarzyk and Heringa, 2004, 2006) by �nding the union of all overlappingpairwise homologous segments. We refer to the resulting segments as "bakbone." Theregions omplementary to the "bakbone" are genome-spei� "islands" of sequeneontent. We unalign any aligned regions that lie outside a bakbone segment.5.3 ResultsThe Progressive Mauve alignment algorithm results in a multiple genome alignmentwhere any nuleotide is aligned to at most one other nuleotide. After �ltration ofnon-homologous segments, the remaining aligned regions are typially either mono-topoorthologous (Dewey and Pahter, 2006) or xenologous (Fith, 2000), and rarelyparalogous or non-homologous. In addition to preditions of homologous nuleotides,Progressive Mauve predits the endpoints of segmental homology among eah pair ofgenomes. Finally, the algorithm also predits the boundaries of genome-spei� se-quene and sequene onserved in two or more of the genomes under study, whih werefer to as bakbone sequene.5.3.1 An alignment of enterobateriaWe apply the progressive genome alignment method to two groups of enteri bateria:a set of 12 E. oli and Shigella genomes (desribed presently), and a set of 9 genomesof Enterobateriaae (desribed in Chapter 8. The alignment of 12 E. oli genomesonsumes approximately 12 hours of omputation and 6GBmemory on an AMD Opteronworkstation. A visualization of the resulting alignment is shown in Figure 17. The �nalalignment onsists of 355 LCBs of minimum length 28, whih onstitute a total of 12.0
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Figure 17: An alignment of 12 E. oli genomes reveals 355 well-supported loallyollinear bloks and substantial amounts of lineage-spei� sequene. Eah genomeis laid out on a horizontal trak. Colored bloks indiate segmental homology, withlines onneting orthologous LCBs aross genomes. Bloks shifted below a genome'senter axis are in the reverse omplement orientation relative to the referene genome.Crossing LCB-onneting lines indiate that a rearrangement has taken plae. The ir-ular genome of E. oli E24377A, shown at bottom, appears to have been linearizedat a di�erent point than the other genomes, resulting in a large number of rossingLCB-onneting lines.



75Mbp of unique sequene. The E. oli appear to have undergone substantial amountsof gene �ux, and some isolates, partiularly Shigella isolates, appear to be undergoingrapid genome rearrangement.5.3.2 Interative visualizationWe have developed an interative visualization tool to assist exploration and interpreta-tion of the alignments generated by our method. The Mauve visualization environmentenables inspetion of multiple genome alignments at all sales, from a global display ofomparative genome arhiteture to detailed inspetion of nuleotide substitution. Asshown in Figure 18, eah aligned genome is displayed on a horizontal trak omposedof a sequene similarity plot and annotated sequene features. The viewer reads anddisplays annotated sequene features from GenBank format �at �les using the BioJavalibrary. The sequene similarity plot shows segmental homology as round retangles(bloks), with an average sequene identity plot inside the rounded retangle.The height of the sequene identity plot re�ets the average olumn entropy forthe region of the alignment overed by a olumn of display pixels. Spei�ally, thesimilarity plot height is diretly proportional to a similarity value s(A, g, i) whih wede�ne as follows. Consider the alignment A as a G×C matrix, where eah of the G rowsorresponds to a genome and there are C olumns. Eah matrix entry is an elementin the alphabet {A,C,G, T,−}. To alulate the similarity for a given genome g ∈ G,we projet A to the submatrix A : g, whih is the submatrix formed by removing allolumns where the entry for genome g is a gap (−). The similarity value for position iof g an then be alulated as:
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rpoSmutSFigure 18: A detailed view of the hypervariable region between the genes mutS and rpoSin E. oli K12. In the region between mutS and rpoS, several eah taxa have aquiredan alternative set of non-homologous genes. We refer to suh non-homologous genessurrounded by onserved orthologous genes as alternalogs. A blak retangle outlinesthe region ontaining alternalogs in the �gure, and olors on the similarity plot indiatethe taxon groupings of segments that are onserved among two or more genomes. Mostimportantly, mauve-olored segments are onserved among all taxa. The blue segmentsare onserved among K12, HS, CFT073, UTI89, and E24377A. Goldenrod segments arespei� to the uropathogeni CFT073 and UTI89 isolates. Bright yellow segments areonserved between EDL933 and RIMD, and alternatively S. sonnei and S. boydii. Lightgreen segments are onserved among the two S. �exneri, while medium green segmentsare onserved between S. �exneri, S. dysenteriae, EDL933, and RIMD. The observedpattern of segmental homology appears to result from a ombination of intraspei�reombination and di�erential gene loss.
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1(A:g)k,j=awhere ω is a onstant sliding window size, defaulting to 5nt. The funtion count(a,A, g, j)ounts the number of times harater a ours in olumn j of A : g. The funtion
H(A, g, j) e�etively omputes the Shannon entropy of alignment olumn j in the sub-matrix A : g, with slight modi�ation to onsider eah gap ′−′ as a di�erent harater.This modi�ation auses a olumn of all gaps or nearly all gaps to have high entropy,implying poor sequene onservation. Without the modi�ation, heavily gapped align-ment olumns would appear to be well onserved. When information about the loationof onserved �bakbone� segments is available, we further modify the equations above toompute similarity only on the subset of genomes in whih the segment is onsidered tobe onserved. Finally, when a single display pixel overs a range of sequene oordinates
x . . . y, we display the average similarity plot height for that pixel, omputed as:

y
∑

i=x

sim(A, g, i)

y − xIt is worth noting that ω may be set to 0 so that the display of average similaritydoes not use sliding windows to smooth the similarity peaks. Numerous problems existwith analyses based on sliding window methods, although for the type of exploratorydata analysis presented by the Mauve viewer, use of a sliding window should not pose a



78problem.5.4 DisussionMultiple alignments of genomes with rearrangement and lineage-spei� sequene mayprovide evidene for anestral rearrangement events that are undetetable with pairwiseomparisons of extant sequenes. The simplest senario for whih an anestral rear-rangement an be deteted in a multiple alignment, but not among pairwise alignmentsis shown for three genomes in Figure 19.The alignments produed by our method serve as a foundation for further study intoall aspets of genome evolution. Both deterministi (Bourque and Pevzner, 2002, Tangand Moret, 2003) and Bayesian (Miklos, 2003, Larget et al., 2002) methods for infer-ene of genome rearrangement histories may diretly use the LCB preditions as input.A hallenge exists, however, beause suh methods typially assume that orthologoussegments are present in all genomes under study. Alignments produed by ProgressiveMauve frequently ontain segments onserved in only a subset of the organisms un-der study, presumably due to di�erential gene loss or aquisition via lateral transfer.Bayesian methods for inferene of gene ontent evolution via loss and lateral transferhave reently been proposed (Csuros and Miklos, 2006), but work remains to integratesuh models with a model of genome rearrangement.In addition to supporting studies of genomi rearrangement, our multiple genomealignments enable genome-wide study of reombination patterns and seletive fores.
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Figure 19: Some genome rearrangement events may be undetetable using pairwise om-parisons, but revealed through multiple genome omparison. The ommon anestor (A)of extant genomes C, D, and E has �ve genes, numbered 1 through 5. A transpositionours on the branh from A to C, but the transposition is not observable in pairwiseomparisons between C, D, and E due to di�erential gene loss. A simultaneous ompar-ison of C, D, and E reveals the rearrangement as a yle in the alignment graph.Several studies of reombination and seletion among mirobial genomes have been pub-lished to date, however the majority have foused only on geni regions, ignoring impor-tant non-oding sequene (Chen et al., 2006).AknowledgmentsProgressive Mauve was oneived on a ouh in Barelona.



80Chapter 6
Evaluating alignment auray
Without a `orret' alignment of the enteri genomes, the alignments alulated bythe previously desribed methods an not be evaluated for auray. Although severalbenhmark data sets exist for protein sequene alignment (Thompson et al., 1999, Edgar,2004), no suh benhmark data sets exist for the genome alignment task. Construtionof an alignment auray benhmark would require manual uration of a whole-genomemultiple alignment that inludes rearrangement and lateral gene transfer, a task that todate has proven too time-onsuming and di�ult. Despite the lak of a manually uratedorret alignment, we an estimate the alignment auray by modeling evolution andaligning simulated data sets.The inferential power yielded by using simulated evolution to evaluate alignmentauray is only as strong as the degree to whih the simulation faithfully represents theevolutionary proesses that produe naturally ourring genomes of interest. Keepingthat fat in mind, we onstruted a simplisti model of genome evolution that we believeaptures the major types, patterns, and frequenies of events in the history of the enterigenomes. Given a rooted phylogeneti tree and an anestral sequene we would like togenerate evolved sequenes for eah internal and leaf node of the tree, along with a mul-tiple sequene alignment of regions onserved throughout the simulated evolution. To



81e�etively represent genome evolution, the simulation must inlude nuleotide substitu-tions and indels in addition to genome sale events suh as horizontal transfer, inversion,and rearrangement.Nuleotide substitutions are ostensibly the best studied and most ubiquitous muta-tion proess. We use the HKY85 (Hasegawa et al., 1985) model of nuleotide substitu-tion implemented in the Monte-Carlo simulation pakage alled Seq-gen (Rambaut andGrassly, 1997). We apply a Transition/Transversion ratio of 4 and gamma-distributedrate heterogeneity with shape parameter α = 1. Small insertions and deletions (in-dels) are modeled as ourring with uniform frequeny and distribution throughout thegenomes, with a size sampled from a Poisson distribution with mean value 3bp. Whenstudying the di�erenes between E. oli O157:H7 EDL933 and K-12 MG1655 (Pernaet al., 2001), it beame lear that a small number of horizontal transfers introduinglarge regions of sequene have ourred, while the majority of transfers introdued smallsequene regions. Our model inludes large horizontal transfer events uniformly dis-tributed in length between 10Kbp and 60Kbp. The size of small horizontal transferevents is sampled from a geometri distribution with mean value 200bp. Horizontaltransfer is implemented by simultaneously evolving a set of 'donor' genomes from whihhorizontally transferred sequene an be sampled.Using the observation that two overlapping inversion events an result in a translo-ation, our model does not expliitly implement transloation events. The length ofinversions are sampled from a geometri distribution with mean value 50Kbp. Loa-tions for inversion and horizontal transfer events are sampled uniformly throughout thegenome, and all events are simulated to have taken plae at a point in time given bya marked Poisson proess over the phylogeneti tree. Finally, genome size is expeted



82to stay relatively onstant over time, so deletion events are sampled with the same sizeand frequeny as events that introdue new sequene. Our implementation of the evo-lutionary model desribed above is referred to as the simple genome evolver, or justsgEvolver.6.1 Alignment soringWe sore the alulated alignments against the orret alignments generated during theevolution proess. Previous studies of alignment auray have used a sum-of-pairs sor-ing sheme to haraterize the nuleotide level auray of the aligner (Thompson et al.,1999, Darling et al., 2004a). The experiments presented here use sum-of-pairs soring,but we also de�ne several new auray measures intended to quantify eah alignmentsystem's ability to detet segmental homology and predit breakpoints of genomi rear-rangement. We treat nuleotide alignment auray more preisely by de�ning riteriafor True Positive, False Positive, and False Negative alignments, allowing us to hara-terize both sensitivity (reall) and positive preditive value (preision) of eah method.A summary of the soring metris appears in Table 4 and full de�nitions follow.For nuleotide-level alignment auray metris, we lassify eah pair of nuleotidesaligned in a alulated alignment as either True Positive (TP), False Positive (FP), orFalse Negative (FN). A True Positive is a pair of nuleotides aligned in the alulatedalignment that also appear in the orret alignment. A False Positive is a pair of nu-leotides aligned in the alulated alignment that is not found in the orret alignment.A False Negative is a pair of nuleotides aligned in the orret alignment whih were notaligned in the alulated alignment. We do not quantify True Negative (TN) alignments,



83Nuleotide Sensitivity TP / (TP + FN) The fration of orretly aligned nuleotidepairs in the alulated alignment.The fration of nuleotide pairs orretly alignedNuleotide PPV TP / (TP + FP) in the alulated alignment, out of the total nuleo-tide pairs aligned in the alulated alignment.The fration of LCBs in the orret alignmentLCB Sensitivity TP / (TP + FN) that had at least one orretly aligned pair ofnuleotides in the alulated alignment.The fration of LCBs in the alulated alignmentLCB PPV TP / (TP + FP) that had at least one orretly alignedpair of nuleotides.The distane between the predited breakpointBreakpoint loalization - of rearrangement and the true breakpointof rearrangement.Table 4: A summary of the soring metris used to evaluate auray of genome align-mentsas there are exponentially many TN possibilities.We also quantify the ability of eah aligner to orretly identify orthologous segmentalhomology in the form of Loally Collinear Bloks (LCBs). For eah possible pair ofgenomes we measure whether the aligner �nds LCBs among that pair, yielding a sum-of-pairs LCB auray metri. When an aligner orretly aligns at least one pair ofnuleotides in an LCB, we onsider the LCB as orretly found in the orrespondingpair of genomes (True Positive). Pairwise LCBs in the orret alignment whih haveno orretly aligned pairs in the alulated alignments are onsidered not found (FalseNegative). Any pairwise LCB in the alulated alignment that ontains no orretlyaligned positions is onsidered to be a False Positive. As with the nuleotide auraymetri, there are exponentially many True Negative LCB preditions whih we do notreport.Finally, we quantify how well eah aligner loalizes the exat breakpoint of rear-rangement. When an LCB is orretly predited in the alulated alignment, we reord



84the di�erene between the boundary oordinates of the orret LCB and those of thealulated LCB. When the di�erene is negative, the alulated alignment has underpre-dited the boundary, i.e. the alulated LCB does not extend to over the full region ofhomology. A positive di�erene indiates an overpredition, where the alulated LCBinludes additional sequene beyond the end of the segmental homology. We reportmean, standard deviation, and quantile statistis for LCB boundary preditions.6.2 ExperimentsUsing the simple genome evolver, we designed and exeuted experiments to ompare theperformane of several genome alignment systems under a variety of mutational regimes.Multiple alignment experiments used a phylogeneti guide tree estimated for a group ofnine E. oli, Shigella, and Salmonella, midpoint rooted to provide an entry point for theanestral sequene. Figure 20 shows the topology and branh lengths of the tree usedfor our simulation studies. Rather than generate a random anestral sequene, we usedDNA randomly sampled from an enteri genome in order to preserve the distributionof sequene motifs and repetitive subsequenes found in naturally ourring genomes.Additional enteri DNA was sampled for use as a donor sequene pool for insertion andhorizontal transfer events. Both samplings are without replaement, i.e. the anestraltarget sequene and the anestral donor sequenes are never idential to eah other.We proessed all evolution simulations and genome alignments using the Condorhigh throughput omputing environment at the University of Wisonsin. The Wison-sin Condor luster ontains over 1000 ompute nodes and allowed us to rapidly alignthousands of simulated data sets.
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Taxon6

Taxon7

Taxon8Figure 20: A phylogeneti tree relating the nine enteri genomes studied in Chapter 4.The tree was alulated using Neighbor-Joining on a genome-ontent distane metri.The unrooted tree has been midpoint-rooted for simulation studies.6.2.1 Experiment: genomes without rearrangementOur �rst experiment ompared the ability of the original Mauve, Multi-LAGAN version1.2, Mavid version 0.9, Mauve 1.3.0, and Progressive Mauve to align ollinear sequenesthat had undergone inreasing amounts of nuleotide substitution and indels. This ex-periment is designed to test the sensitivity of the anhoring methods employed by eahaligner. We simulated evolution of nine genomes at 20 inreasing nuleotide substi-tution rates and 20 inreasing indel rates, performing 3 repliate experiments of eahombination of substitution rate and indel rate.Eah aligner's average sensitivity for eah simulation is displayed in Figure 21. Fromthe �gure, it is obvious that the original Mauve implemention's alignment sore dropspreipitously in the presene of an inreasing substitution rate. The improved versionof Mauve whih uses approximate multi-MUM anhors (versions 1.0 and later) performssubstantially better than the original Mauve, but still falls short of Mavid and Multi-LAGAN at high mutation rates. We attribute this behavior to Mauve's requirementthat the multi-MUM anhors be present in all genomes under study. Multi-LAGAN'salignment anhors an ontain substitutions and indels, and must only align pairs of
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Figure 21: The sensitivity of Mauve(1), Multi-LAGAN(2), Mavid(3), Mauve 1.3.0 withspaed seeds(4), and Progressive Mauve(5) when aligning sequenes evolved with in-reasing amounts of nuleotide substitution and indels. The exat math anhoringtehnique employed by the original Mauve implementation limits its ability to align dis-tantly related sequenes. The more reent Mauve 1.3.0 implementation uses approximatemulti-MUMs as alignment anhors, and performs substantially better. Multi-LAGANversion 1.2 did not omplete the alignments of genomes without indels, resulting in theblak row at the bottom. The performane of Progressive Mauve is omparable to thatof Multi-LAGAN and Mavid 0.9, outperforming these methods for ertain ombinationsof indel and substitution rate. The thin blue line indiates the ombination of indeland substitution rates that were subsequently used for tests measuring aligner robust-ness to inversion (Figure 24). The asterisk(*) indiates the ombination of indel andsubstitution rates used for tests measuring aligner robustness to gene �ux (Figure 25).



87genomes, making them muh more sensitive. Mavid appears to perform better thanMulti-LAGAN at very high mutation rates, probably owing to its method of inferringanestral states along a phylogeny and using those to ompute alignment anhors. Pro-gressive Mauve uses a progressive alignment anhoring approah, allowing it to utilizeanhors present in as few as two genomes. The progressive approah provides a substan-tial boost in anhoring sensitivity and the performane of Progressive Mauve is similarto that of Mavid and Multi-LAGAN. For the nuleotide substitution and indel ratespreviously reported in the enteri data set, Mauve aligns the simulated genomes with ahigh degree of sensitivity.We do not report LCB auray metris for this experiment beause the genomeswere evolved under a model that did not inlude genomi rearrangement.6.2.2 Experiment: pairs of genomes with rearrangementWe proeeded to gauge the ability of the original Mauve implementation and Shu�e-LAGAN version 1.2 to align sequenes that had undergone inreasing amounts of in-version and nuleotide substitution. Beause Shu�e-LAGAN is a pairwise aligner, weredued the number of taxa in our simulation from 9 to two. Three simulations were per-formed for eah of 110 ombinations of nuleotide substitution rate and inversion rate.The average nuleotide sensitivity of Mauve and Shu�e-LAGAN for eah experiment areshown in Figure 22. Speial onsiderations must be taken when soring Shu�e-LAGAN.Beause Shu�e-LAGAN attempts to identify and align both orthologous and paralogousregions but does not distinguish orthology from paralogy, a single residue in the �rstgenome an be ambiguously aligned to multiple residues in the seond genome. Forthe purpose of soring Shu�e-LAGAN, we award points for orretly aligned nuleotide
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Figure 22: The performane of Mauve(left) and Shu�e-LAGAN(right) when aligningtwo sequenes evolved with inreasing amounts of nuleotide substitution and inversions.Mauve is learly more aurate than Shu�e-LAGAN at lower substitution rates. Shu�e-LAGAN version 1.2 did not omplete some alignments without rearrangements, resultingin blak entries. The rate of substitution and inversion observed between E. oli andSalmonella is denoted by an asterisk(*).pairs if the pair appears in anywhere in the alignment, even if the positions have beenaligned to other, non-orthologous residues.The experiment shows that the original Mauve implementation learly exels at align-ing rearranged sequenes under lower substitution rates that do not hamper its anhoringproess. Interestingly, Shu�e-LAGAN appears to perform better as the substitution rateinreases. Based on our experiene, we onjeture that this ounter-intuitive result is re-lated to the repetitive nature of the anestral enterobaterial sequene. Shu�e-LAGANappears to have di�ulty seleting anhors in repetitive sequenes. As the nuleotidesubstitution rate inreases, regions that were repetitive are randomly mutated and thusno longer repetitive. Anhoring its alignment in unique subsequenes provides Mauvewith immunity to this phenomena.We do not report LCB soring metris for this experiment beause Shu�e-LAGANdoes not distinguish between orthologous and paralogous segmental homology.
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Figure 23: The performane of the original Mauve implementation when aligning se-quenes evolved with rates similar to those observed among a group of E. oli andSalmonella genomes. In this experiment, the substitution, indel, and inversion frequen-ies were held onstant while the rates of small and large gene �ux were modulated. Theasterisk denotes the ombination of large and small gene �ux rates observed expetedbetween E. oli and Salmonella. As the rate of large horizontal transfer inreases theamount of lineage-spei� sequene relative to bakbone grows. Beause Mauve an notalign large lineage-spei� regions the alignment sensitivity sore drops. When soredonly on regions onsidered bakbone sequene the sensitivity is onsistently above 98%.6.2.3 Experiment: enterobateria-like genomesOur third set of experiments sought to evaluate the ability of Mauve to align genomessimilar to the enterobateria. Evolutionary rates for the simulation were extrapolatedfrom previously published observations of the di�erenes between E. oli K-12 MG1655and O157:H7 EDL933 (Perna et al., 2001). For these two E. oli, there are about 75,000observed nuleotide substitutions, about 4,000 observed indels, 40 large horizontal trans-fer events, 400 small horizontal transfers, and one inversion. The observed frequenieswere onverted to rates used to assign event frequenies to branhes of the phylogenetiguide tree. It is known that among the group of enterobateria, the Salmonella havehigher rates of inversion and rearrangement than the E. oli. To ompensate, the inver-sion rate was adjusted to result in approximately 30�40 inversion events. When varyingthe substitution and indel rates between 0 and 125% of the observed rates while holding



90horizontal transfer and inversion rates onstant, Mauve alignments onsistently aver-age 80% sensitive, ± 5% (data not shown). The quality of alignment does not appearto drop as the substitution and indel rates are inreased in this range. Rather, it ap-pears that horizontal transfer rates have a more signi�ant impat on alignment quality.As horizontal transfer rates inrease, the ratio of lineage-spei� sequene to bakbonesequene inreases and Mauve's alignment algorithm aligns dereasing amounts of thetotal sequene. When varying simulated horizontal tranfser rates between 100 and 200%of previously reported rates for the enterobateria, Mauve onsistently aligns with about65% sensitivity (Figure 23). When sored only against regions of the simulated genomesonsidered as onserved bakbone, Mauve onsistently aligns with >98% sensitivity.For the purpose of soring the alignment, we de�ne bakbone as a region in the orretalignment ontaining more than 50 gap-free olumns without strethes of 50 or moreonseutive gaps in any single genome sequene. Based on our simulations we believethe original Mauve alignment method aurately aligns regions onserved among allgenomes under study, however, signi�ant lineage-spei� regions remain unaligned.6.2.4 Experiment: high rates of rearrangementWe assessed the relative performane of Mauve 1.3.0 and Progressive Mauve when align-ing genomes with high rates of genomi rearrangement and nuleotide substitution. Weperformed three repliates of simulated evolution at 10 inreasing substitution rates and10 inversion rates. In addition to quantifying sum-of-pairs nuleotide sensitivity, we alsoquanti�ed positive preditive value and LCB auray on this data set. The results,shown in Figure 24, indiate that Progressive Mauve an aurately align genomes withsubstantially higher rates of rearrangement than previous Mauve implementations.



916.2.5 Experiment: high gene �ux ratesSome bateria have been demonstrated to rapidly aquire novel gene ontent from othermirobes (Friedrih et al., 2001, Hsiao et al., 2005), thus we would like to know how wellour alignment methods perform in the fae of substantial aquisition and loss of genetimaterial (gene �ux). We haraterized the auray of Mauve 1.3.0 and ProgressiveMauve when aligning genomes simulated to undergo high rates of both small- and large-sale gene �ux, in addition to modest rates of substitution, indels, and rearrangement.We use an anestral sequene of 500,000nt.The results, shown in Figures 25, indiate that the algorithm used by Mauve 1.3.0falters when faed with large-sale gene �ux, while Progressive Mauve performs sig-ni�antly better. Both Mauve and Progressive Mauve tolerate the small-sale gene�ux�modeled here as insertions and deletions of sequene with geometrially distributedaverage lengths of 200nt. As the rates of gene �ux inrease, the probability that anygiven pair of genomes share orthologous sequene deteriorates and eventually reaheszero in the limit of an in�nitely high rate of gene �ux.6.3 Simulated phylogeneti laddersA ommon experimental design in omparative genomis studies involves sequeningthe genomes of a group of organisms believed to have a phylogeneti relationship thatapproximates a so-alled phylogeneti ladder (Clark et al., 2003, Thomas et al., 2003).Suh experimental designs typially aim to identify genomi regions that are onservedat inreasing levels of sequene divergene. A bene�t of sequening phylogeneti in-termediates in a ladder-type experiment is that multi-genome omparisons may allow



92nuleotide homology to be identi�ed among pairs of organisms that are too divergentfor pairwise omparison.We attempt to gauge the ability of our alignment algorithm to exploit additionalinformation available by sequening phylogeneti intermediates between two divergentorganisms. Beginning with two divergent taxa (a and q in Figure 26), we simulategenome evolution with rearrangement, horizontal transfer, nuleotide substitution, andindels. The sensitivity of our method in aligning the pair of simulated genomes for avariety of branh lengths is given in Figure 27A. We then add a single taxon whihevenly splits the branh from the root to taxon a and evaluate the alignment sensitivity.We ontinue by repeatedly adding taxa at points whih evenly divide the previous taxainto a phylogeneti ladder with inreasing resolution. The alignment sensitivity resultsfor ladders with 0, 1, 3, 7, and 15 taxa in addition to a and q are shown in Figure 27.Rather than evaluate alignment sensitivity among all taxa, we evaluate sensitivityonly among genomes a and q. The pairwise measurement allows us to inspet whetheradding intermediate rungs on the phylogeneti ladder allows our algorithm to limbhigher than otherwise possible. The results suggest that in general, Progressive Mauvean produe substantially better alignments when given additional sequene informationfor intermediate taxa.6.4 DisussionThe simulation studies reveal several important features of urrent genome alignmentalgorithms. In the absene of genomi rearrangement, aligners suh as MAVID, Multi-LAGAN, and Progressive Mauve o�er omparable performane and are able to align



93extremely divergent genomes, up to .75 average substitutions per site in our study.When signi�ant amounts of gene �ux or rearrangement have taken plae, the multiplegenome alignments omputed by Progressive Mauve o�er an unpreedented level of a-uray. Progressive Mauve outperforms both Mauve and TBA for nuleotide-level align-ment and outperforms Mauve for detetion of LCBs indiative of orthology or xenology.Progressive Mauve's ability to aurately loalize the breakpoints of genomi rearrange-ment should permit automated study of sequene patterns (suh as repeats or mobileelements) assoiated with genomi rearrangement.6.5 AknowledgmentsPortions of this hapter appeared as Darling, Mau, Blattner, and Perna (2004a).
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Figure 24: Auray of Mauve 1.3.0 (�rst row), Progressive Mauve (seond row), andTBA (third row) when aligning genomes with inreasing amounts of nuleotide substi-tution and inversions. The inversion rate inreases along the y-axis and the substitutionrate inreases along the x-axis. Colors indiate a perentage sale ranging from 0%(blak) to 100% (white). Progressive Mauve learly outperforms Mauve 1.3.0 and TBAover the entire spae of mutation rates. We do not report LCB auray for TBA be-ause it does not identify monotoporthologous LCBs. The lower portion of the �gureillustrates the ability of Mauve and Progressive Mauve to loalize the breakpoints ofrearrangement. For orretly predited LCBs, the absolute distane between the pre-dited breakpoint and true breakpoint is reorded. Eah ell is a omposite of �vevalues, showing the min, �rst quartile, median, third quartile, and maximum error inbreakpoint loalization. The entirely white ells in the bp loalization results for Mauve1.3.0 our when Mauve 1.3.0 makes no LCB preditions at all, thus ahieving perfetpositive preditive value. The blak ells in Progressive Mauve indiate runs whih didnot omplete.
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98Chapter 7
Deteting homologous reombinationin genome alignments
7.1 IntrodutionThe role of lateral gene transfer (LGT) in shaping prokaryoti genomes has been the sub-jet of intense investigation and debate in reent years (Milkman, 1997, Daubin et al.,2003, Feil et al., 1999, Spratt et al., 2001, Gogarten et al., 2002, Lawrene and Hen-drikson, 2003, Lerat et al., 2003, Ohman et al., 2005, Ge et al., 2005, Beiko et al.,2005). In the pre-genomi era, the handful of examples of LGT were deteted pri-marily as disordane between phylogeneti reonstrutions with di�erent housekeepinggenes (Dykhuizen and Green, 1991, Bowler et al., 1994, Suerbaum et al., 1998, Reid et al.,2000). The explosion of publily available baterial genome sequenes, oupled with thedevelopment of whole-genome omparison tools (Carver et al., 2005, Kurtz et al., 2004a,Darling et al., 2004a), initially foused LGT disovery on genome-wide sans for is-lands of sequenes spei� to partiular lineages of bateria (for example, (Perna et al.,2001, Parkhill et al., 2001, Tettelin et al., 2005, Hsiao et al., 2005)). Most reently,phylogeneti approahes are applied to detet LGT among genome-wide sets of putativeorthologs (Daubin et al., 2003, Ge et al., 2005, Beiko et al., 2005). Together, these studies



99point to low, but detetable, levels of LGT among distantly related speies with oa-sionally higher rates found among organisms that oupy similar environments. Closelyrelated organisms show higher levels of LGT, with intraspei� omparisons showing thehighest levels. Two limitations of these analyses are the lak of phylogeneti resolution,partiularly among intraspei� omparisons, and the reliane on annotated boundariesof genes in delineating andidate regions.Statistial and phylogeneti methods have been developed for deteting reombina-tion in aligned sequenes of single genes or relatively short genomi segments. Onegeneral approah, referred to as nuleotide substitution distribution methods in (Posadaet al., 2002), assesses atypial lusters of nuleotide di�erenes. Clusters ome in two�avors: groups of polymorphisms exhibiting the same topologially disordant pat-tern (Graham et al., 2005, Stephens, 1985), or an elevated rate of mutation in a singlelineage aross a segment of the alignment (Maynard Smith, 1998, Qiu et al., 2004,Sawyer, 1989, Worobey, 2001). The former indiates reombination between omparedstrains, while the latter implies a reombination with some unknown, more divergent,strain. Phylogeneti methods are most often applied in the ontext of deteting re-ombination break points in sequene alignments (Grassly and Holmes, 1997, Husmeierand MGuire, 2002, MGuire and Wright, 2000, Minin et al., 2005). These methodsrequire longer alignments, are omputationally intensive, and have reportedly been out-performed by substitution distribution methods on simulated test data (Posada andCrandall, 2001).Genome-sale analyses of lateral transfer events have typially relied on identi�ationof inongruent tree topologies from phylogeneti analyses of sets of putative orthologous



100genes identi�ed by reiproal BLAST analyses (Lerat et al., 2003, Ge et al., 2005, Ray-mond et al., 2002). This approah an be onfounded by errors assoiated with BLAST,suh as false-positive orthologs, is limited to identifying reombination events that o-ur within gene boundaries, and is unlikely to identify short reombined regions withingenes.Reently, a Markov lustering algorithm was used to partition orthologous pairsof genes, determined by an all-versus-all BLAST omparison of 144 fully sequenedprokaryoti genomes, into maximally representative lusters (Beiko et al., 2005, Harlowet al., 2004). Bayesian phylogeneti analysis (for example, (Mau et al., 1999, Ronquistand Huelsenbek, 2003)) was applied to eah luster of four or more taxa to infer lateralgene transfer against the bakground of a onsensus 'supertree' of sequened bateria.This approah is most suessful in determining global pathways of gene transfer betweenphyla and divisions of prokaryotes, where homologous reombination is unlikely to haveplayed a signi�ant role. Rather, these likely arise as illegitimate reombination events.Here, we develop a method to detet segments of losely related genomes that havebeen replaed with a homologous opy from another onspei� lineage, that is, an allelisubstitution. The method is not designed to detet non-homologous sequenes thatmay have aompanied a homologous reombination event or homologous reombinationevents involving idential alleles.The method ompiles a list of polymorphism sites from a whole-genome multiplealignment, then applies sore funtions to loate lusters disordant with the predomi-nant phylogeneti signal. Identi�ed lusters an ross gene boundaries and non-odingsequene. Our use of extreme value theory furnishes us with a statistially defensi-ble riterion to assess signi�ane of these lusters in muh the same manner as the



101Karlin-Altshul statistis help interpret BLAST results (Altshul et al., 1990, Karlinand Altshul, 1990).We apply the reombination detetion method to the published genome sequenes ofseveral E. oli (Perna et al., 2001, Blattner et al., 1997, Jin et al., 2002, Wei et al., 2003,Hayashi et al., 2001, Welh et al., 2002). Constrution of a multiple whole genome align-ment failitates a global survey of reombination among these E. oli isolates. Genomesequenes must �rst be partitioned into loally ollinear bloks (LCBs) - regions withoutrearrangement. Most LCBs ontain lineage-spei� sequene aquired through lateralgene transfer or di�erential gene loss. To further ompliate matters, non-homologoussequenes from di�erent organisms an integrate into di�erent lineages at a ommonlous (Perna et al., 2001). In a previous work, we developed a software pakage alledMauve (Darling et al., 2004a) that an onstrut global multiple genome alignmentsin the presene of rearrangement and lineage-spei� ontent. The Mauve alignmentsprovide a onvenient starting point for loating polymorphi patterns indiative of in-traspei� reombination, whih we all alleli substitution.7.2 ResultsAs seen in Figure 28, the Mauve genome aligner takes the four E. oli and two Shigella�exneri genome sequenes and returns 34 loal alignments spanning 3.4 Mb of ho-mologous sequene ommon to all strains. The majority of rearrangements our inShigella genomes where inversions between opies of repetitive elements are relativelyfrequent (Blattner et al., 1997).Computer-assisted sreening of the Mauve output �nds 733 problemati intervals
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Shigella flexneri 2A  2457T

Shigella flexneri 2A  301

E. coli CFT073

E. coli O157:H7 RIMD 0509952

E. coli O157:H7 EDL933

E. coli K12 MG1655

Figure 28: A multiple whole-genome alignment of six strains onsists of 34 rearrangedpiees larger than 1 kb. Eah genome is laid out horizontally with homologous segments(LCBs) outlined as olored retangles. Regions inverted relative to E. oli K-12 areset below those that math in the forward orientation. Lines ollate aligned segmentsbetween genomes. Average sequene similarities within an LCB, measured in slidingwindows, are proportional to the heights of interior olored bars. Large setions of whitewithin bloks and gaps between bloks indiate lineage-spei� sequene.



103Bipartition (split) Pattern KOOCS Number of SNDs Relative frequeny((KSSOO)C) 111211 50,354 38.73((KSSC)OO) 122111 19,678 15.14((KOOC)SS) 111122 18,490 14.22((KSSOO)C) 111211 14,115 10.86((KSS)(OOC)) = KS 122211 9,882 7.60((KOO)(SSC)) = KO 111222 6,890 5.30((KC)(OOSS) = KC 122122 5,874 4.52Table 5: Common single nuleotide di�erenes have two alleles. Eah suh nuleotidedi�erene separates the six genomes into two lasses. Pattern odes are represented as 6-tuples of ones and twos (for allele 1 and allele 2) in the following order: (K) E. oli K-12MG1655, (O) E. oli O157:H7 EDL933, (O) E. oli O157:H7 Sakai strain RIMD0509952,(C) E. oli CFT073, (S) Shigella �exneri 2A 301, and (S) Shigella �exneri 2A 2457T.By onvention, K-12 is always allele one. For brevity, key groupings are denoted as KS,KO, or KC. The remaining 3.6% SNDs ome in over 50 di�erent patterns, inludingone quadripartition. See Appendix 1 in additional data �le 1 of Mau et al. (2006) foradditional frequenies.inside LCBs in whih base pairs do not properly align beause of gaps reated by lineage-spei� sequene and/or attempts to align non-homologous sequene. Deleting theseintervals from the alignment yields 130,008 high quality base pair di�erenes. Commonbipartitions, onstituting 96.4% of all suh di�erenes, are listed in Table 5.We use the term 'single nuleotide di�erene' (SND) to desribe the partition stru-ture at a variable site in the alignment. A representative 100 base-pair (bp) segment ofthe 3.4 Mb alignment is presented in Figure 29 for illustrative purposes.All but 2% of variable sites are bi-alleli, meaning eah site splits six strains into twogroups, alled a bipartition. Nearly 80% of the bi-alleli SNDs have a minor allele uniqueto the CFT, K-12, O157:H7, or S. �exneri lineage. The remaining bi-alleli SNDs dividethe lineages into three alternative pairings of sister taxa, giving rise to three alternativeunrooted tree topologies denoted as: ψKS (K-12 with S. �exneri, CFT with O157:H7);
ψKO (K-12 with O157:H7, CFT with S. �exneri); and ψKC (K-12 with CFT, O157:H7
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START CDS mutS

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAGGCTGAAAGCCCAGCATCC K-12 MG1655 

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC O157:H7 EDL933

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC O157:H7 Sakai

AACATCAGGGAGCCGGACTTAACCCCATGAGTACAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC CFT073

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC S.flexneri  2A 301

AATATCAGGGAACCGGACATAACCCCATGAGTGCAATAGAAAATTTCGACGCCCATACGCCCATGATGCAGCAGTATCTCAAGCTGAAAGCCCAGCATCC S.flexneri  2A 2457T

2855097^  2855107^  2855117^  2855127^  2855137^  2855147^  2855157^  2855167^  2855177^ Coordinates in K-12

  1        1      1             1                                                1Figure 29: Small sample segment of the alignment spanning the start of the mutS gene(denoted in blue). Loation of a mismath is indiated by the integer '1' along the bottomrow. Five olumns ontain SNDs: TTTCTT, AAAGAA, AAATAA, GGGAGG, andGAAAAA. The �rst four share the same bipartition pattern (111211) and are deemedequivalent, even though one of them results from a transversion. The �fth SND isonsidered distint based on its bipartition despite having the same mutation (A to G)found in the seond SND.

Figure 30: Three exursions (KS, KO, and KC) spanning the alignment with K-12MG1655 as referene genome. The KS random walk plot, representing the dominantlonal topology, dereases more gradually than do the two other plots. Exursions forthe disordant topologies (patterns KO and KC) run parallel to one another, exept ina 100 kb region at 2 Mb where KO abruptly inreases. Parallel �at gaps ommon to allthree plots re�et K-12 lineage-spei� sequene.



105with S. �exneri).The four lineages serve as operational taxonomi units (OTUs) in our study of allelisubstitution in E. oli. When nuleotides at a polymorphi site exhibit a partitionstruture explainable by a single point mutation, the indued bipartition is said tobe ompatible with the enabling topology. Bipartitions labeled KS, KO, and KC inTable 5 are ompatible with the topologies ψKS, ψKO, and ψKC , respetively. Note thatfrequeny of the KS pattern exeeds that of eah of its ompetitors by 3,000 SNDs,thus ertifying ψKS as the 'speies' topology. The elevated frequeny of SNDs uniqueto CFT roots topology ψKS as (((KS)O)C). The 102,000 topologially uninformativelineage-spei� SNDs nevertheless provide information that our method uses to assessreombination.We de�ne three omplementary sore funtions that disriminate between KS, KO,and KC patterns. Eah of these sore funtions assigns an integer value to eah SNDpattern. Moving aross the hromosome of referene strain MG1655, we keep a umula-tive sum of the sores assigned by eah funtion to onseutive SNDs in the alignment.Graphial representations of umulative sores, alled random walk plots or exursions,an reveal large-sale variations in feature omposition. Exursions for eah of the threetopologies are plotted onurrently in Figure 30.A large phylogeneti anomaly appears midway through the alignment. Magni�ationof a 100 kb segment between 1.95 and 2.1 Mb reveals a ore 40 kb region in whih KOSNDs are the dominant pattern of substitution, �anked by transitional regions for whih
ψKO serves as the 'gene tree' as well.Global random walk plots highlight grossly deviant regions. In this alignment, asolitary segment stands out. All other regions appear indistinguishable from one another



106in Figure 30. Unless stated to the ontrary, DNA sequene and genes from the largeatypial region (from sdiA to gnd) are exluded from further omputations (a separateanalysis of this region is inluded in Appendix 2 of additional data �le 1 of Mau et al.(2006)).7.2.1 Loal variation in phylogeneti signalIn Figure 30, lusters of like patterns labeled KS, KC, or KO generate tiny, impereptiblebumps in the orresponding random walk plots. Examined at higher resolution (datanot shown), they an be seen to puntuate eah exursion. However, manual sanningof high-resolution random walk plots is tedious, time onsuming, and error-prone. InMaterials and methods, we desribe an alternative strategy that automatially sans forlusters at the loal level.The sore funtions generating Figure 30 are designed to eliit large positive loalsores (di�erenes in umulative sores evaluated at nearby positions) whenever lustersof like, topologially informative, patterns are enountered. When that loal sore ex-eeds a predetermined threshold, the interval between the delimiting SNDs is delareda high soring segment (HSS). The strategy behind this sheme is exatly analogous toBLAST (Altshul et al., 1990), in whih high soring segments denote probable homologybetween the query and one or more referene sequenes.When two lineages share a nuleotide that is not the result of a single mutation ina ommon anestor, a homoplasy is said to have ourred. Homoplasies arise eitherthrough multiple mutations at a ommon site (onvergent evolution) or reombination.The former tend to be distributed randomly about an alignment, whereas a reombina-tion event typially produes a luster of nuleotide di�erenes at nearby sites exhibiting



107the same SND pattern. Our approah identi�es suh lusters of nuleotide di�ereneswith a ommon phylogeneti partitioning pattern. Variability in mutation rates andpatterns in di�erent hromosomal regions and baterial lineages might also lead to phys-ial lustering of similar substitutions. Although the lustering of sites with similarpatterns strongly suggests homologous reombination between lineages, we annot ruleout the possibility that some lusters arise by independent mutation-driven proesses.Simple sore funtions alone annot distinguish between these two possibilities, thoughthe latter is believed to be relatively rare.Our method relies on the relative intensity of partiular SND patterns (the one ofinterest versus all others) to measure luster formation, rather than the absolute numberof SNDs in any given �xed length segment of the alignment. As a result, loal mutationalintensity is fatored out of the analysis. We assert this is legitimate provided the overallrate of mutation is not too great, and loal deviations from that average are not severe.A more detailed study is presented in Appendix 5 of additional data �le 1 in Mau et al.(2006). Random SNDs an and do form lusters of idential patterns simply by hane.Given the number of SNDs and their relative frequenies within the alignment, we wishto distinguish 'bumps' that are too large to have ourred by hane.Here again, BLAST statistis (Karlin and Altshul, 1990) serve as the model forassessing signi�ane. Random walk theory provides the tools for assessing high soringsegments, and the orresponding extreme value distributions (EVDs) guide seletion ofappropriate thresholds. Random walks (as opposed to random walk plots) are stohastiproesses operating under a �xed set of probabilities at eah stage.
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Alignment gapFigure 31: The KS loal random walk plot showing homologous reombination in thetryptophan (trp) operon. Genes are retangular boxes positioned above or below the axisbased on transribed strand. KS SNDs form two non-overlapping MSCs with signi�antloal sores exeeding 170. Both MSCs, with a ombined length under 2 kb, are ontainedin a single 6.5 kb HSS overing most the trp operon. The positions of eah KO, KC,and KS SND in E. oli K-12 are shown above the KS exursion. Random walk valuesbelow 50 are not plotted, resulting in the absene of visible KC or KO exursions.In the Materials and methods setion, we apply the relevant theory to derive thresh-olds. Using the appropriate extreme value distribution as an arbiter, we hose a signi�-ane threshold of 170 for lusters of KS SNDs and the same value of 100 for both KOand KC, as their frequenies are nearly idential outside the large atypial region (4.85%versus 4.57%). These thresholds de�ne 186 high soring segments that span 7.5% of thesequene alignment. A breakdown by pattern and range of sores is arrayed in Tables 2and 3.We deviate from BLAST protools in one important respet: a high soring segmentmaximizes the loal sore, whih is the primary goal of sequene alignment. Here,we want to isolate sub-regions within an HSS that individually exeed the signi�anethreshold. Our rationale is that sequene between sub-regions may not have partiipatedin the reombination, and we want to identify only those genomi intervals that possessprima faie evidene of reombination.



109A minimal signi�ant luster (MSC) is a smallest subset of ontiguous SNDs generat-ing a loal sore above the threshold. To avoid ambiguity, overlapping MSCs supportingthe same topology are merged into a single representative MSC. Most high soring seg-ments onsist of a single suh luster, but HSSs with more than 150 SNDs often ontaintwo or more disjoint MSCs.HSSs and MSCs are represented graphially by modifying global random walk plots.By subtrating o� the underlying negative trend, only positive loal sores are displayed.Figure 31 shows a loal random walk plot for the HSS overing the seven genes ofthe tryptophan operon. The trp operon was the �rst reported example of homologousreombination in E. oli (Stoltzfus et al., 1988).Although the entire trp operon may have been exhanged in a single event, onlytrpA and trpE ontain lusters of KS SNDs that individually give rise to statistiallysigni�ant loal sores. Moreover, the �rst MSC learly inludes in exess of 200 bpdownstream of the trp operon - evidene that downstream transription terminationsignals have also been subjet to homologous reombination. In this manner, MSCsfailitate more preise targeting of hromosomal regions impliated in reombination.This riterion modestly inreases the number of reombined segments to 216 (75, 62,79 for KO, KC, KS, respetively) while reduing the amount of partiipating sequenefrom 251 kb to 129 kb. We outline a proedure for �nding non-overlapping minimalsigni�ant lusters inside high soring segments in Materials and methods.



110HR deteted Genes Perent Reombined χ2 sore Multi-Fun Level 2 ategories5 144 3.5 4.52 Ribosome andpeptidoglyan struture10 237 4.2 5.47 Cell division, ell protetion,and adaptation to stress14 279 5.0 4.35 Protein-related information20 329 6.1 2.94 RNA-related information386 4,035 9.6 Not Reported All other funtions,inluding unknown48 357 13.5 9.24 Building blok biosynthesis16 109 13.8 3.21 DNA-related information7 40 17.5 3.56 Group transloators (PTS)9 46 19.6 6.24 MotilityTable 6: Categories with few members suh as ribosome and peptidoglyan strutureare ombined together, as are three types of ell proesses. We omputed a χ2 goodness-of-�t statisti for eah ategory, but do not report p values beause dependenies existbetween ategories.7.2.2 Gene ontent of regions that underwent reent alleli sub-stitutionAlthough our method identi�es reombination events independently of gene boundaries,it is interesting to look at the types of genes and gene produts involved in these events.To this end, we extrated a list of genes enoded in regions deemed atypial by ourrandom walks. Among the 4,353 genes in K-12, 3,107 align aross all six genomes. Ofthese, 271 genes interset a minimal luster segment. When augmented with 40 genesfrom the atypial region, 10% of shared genes exhibit evidene of reombination. A tableof the 186 high soring segments, subdivided into MSCs and identifying a�eted genes,is provided as Additional data �le 2.We examined this list of 311 genes in light of gene funtion assignments made usinga ontrolled voabulary alled MultiFun (Serres and Riley, 2000) that supports multiple



111funtional lassi�ations for a given gene. The 3,107 genes aligned by Mauve in allsix genomes have been lassi�ed with 5,550 gene funtions. Nearly 2,000 genes have asingle lassi�ation (many are 'Unknown funtion'). By ontrast, six genes have seven'Level 2' funtions. This analysis revealed an over-representation of four ategories andunder-representation in seven others (Table 6).Highly onserved genes that enode omponents of the ribosome and genes involvedin peptidoglyan biosynthesis show little evidene of detetable reombination. Con-versely, many genes involved in motility and hemotaxis undergo alleli substitution.Chemotaxis may also be related to elevated reombination deteted among genes enod-ing omponents of phosphotransferase transport systems (PTSs) sine these genes andouble as sensors for substrates suh as gluose and mannose (Zeppenfeld et al., 2000).Genes involved in basi proessing of ellular information, suh as repliation, tran-sription and translation, reveal an unexpeted dihotomy: genes dediated to RNAand protein metabolism are refratory to reombination, but genes involved with DNArepliation, repair and reombination appear prone to alleli substitution. Equally sur-prising is a bias favoring evident reombination among genes involved in small moleulebiosynthesis. Examples of biosyntheti genes that support the pairings in topology ψKCinlude members of the aromati amino aid pathway (aroP, aroD, and aroG) as well asthe pyrimidine produing arB (also known as pyrA). SND lusters supporting topology
ψKO are present in pyrI, pyrB, and several genes in the histidine operon. Finally, purD,purF, leuDC, modABC, and two genes in the trp operon (Figure 31) ontain lustersompatible with the lonal topology, but at muh higher intensity than elsewhere in thegenome.
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Figure 32: Mosai operons and genes. Three of six rha genes (rhaB, rhaA, and rhaD)belong to an operon on the reverse strand. This operon is unusual beause well- de�nedreombination events learly fall within gene boundaries; rhaD ontains two dense KClusters, whereas rhaA and rhaB ontain predominantly KS and KO SNDs, respetively.In a nearby operon onsisting of fdoG, fdoH, fdoI, and fdhE, there has been a KCintrageni reombination event with fdoG a mosai, resulting from two reombinationevents, one of whih is shared with fdoH.7.2.3 Mosai operons and genesWith over 216 reombined segments interseting 271 genes, this group of E. oli genomesis truly a pathwork of its onstituent members. Although genes within the trp and hisoperons ontain multiple lusters of the same pattern (KS for trp, KO for his), suhuniformity aross operons is atypial (Omelhenko et al., 2003). Figure 32 shows a shortstreth of aligned sequene ontaining two mosai operons.Besides fdoG (shown in Figure 32), six other genes - polB, mutS, speF, reG, atP,and yfaL - show evidene of mosaiism. Three of these genes�polB, mutS, and reG�areinformational genes involved in DNA repliation and repair. Eah mosai gene ontainstwo minimum signi�ant lusters generated by di�erent partition patterns. A loserinspetion of one of these genes, speF, suggests that all three phylogeneti signals maybe present, as shown in Figure 33.Other mosai genes undoubtedly exist within these strains, but their phylogenetisignal is too short or too weak to register in a genome-wide san. Full genome sansome at a ost; one must sari�e sensitivity to maintain spei�ity. At present, we are
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Figure 33: Random walk plots for positive loal sores in the viinity of the speF gene.speF is a mosai gene by virtue of its KS and KO lusters. Note the small luster ofKC SNDs appears to divide a large KS segment near oordinate 718,600. This short KCspike, though not statistially signi�ant on a whole genome sale, would undoubtedlypass a single gene substitution distribution type test.
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KCFigure 34: Perentage of SNDs supporting eah of three topologies in a phylogenetinetwork for six E. oli genomes (four OTUs). Blak lines desribe the 'speies' topology.Green, blue, and orange lines indiate the alternative pairings of sister taxa that resultfrom KS, KO, and KC reombinations respetively. Also shown is the perentage ofSNDs supporting eah bipartition in Table 5.ontent to underestimate the true amount of reombination in order to eliminate falsepositives.7.3 DisussionNatural transformation, transdution, and onjugation are three mehanisms for trans-porting foreign DNA into the ell. The relative ontribution of eah mehanism variesfrom speies to speies. For example, transformation is the dominant mode of transferin bateria suh as Neisseria meningitidis and Heliobater pylori that are naturally



114ompetent, that is, able to absorb small piees of naked DNA. As E. oli is ompetentonly under extreme onditions, typially in the laboratory, it is expeted that this formof transformation may play a minor role in nature. Exogenous DNA an also entervia phage transdution or onjugation, whih are expeted to be the primary soure ofexogenous DNA for E. oli. Transduing phages an deliver large fragments of genomiDNA from their previous baterial host into a reipient strain. DNA transferred viaonjugative mehanisms an be even larger.The lengths of reombined segments reported in the previous setion are typiallyshort. Half the intervals are shorter than 1 kb, and 80% are less than 2 kb. DNAfragments delivered by transduing phages might be expeted to be onsiderably larger(30 to 60 kb). The size di�erential between entrane and inorporation moleules hasbeen partially reoniled by experiments in whih site-spei� DNA was pakaged intophages and transdued into K-12 ells (MKane and Milkman, 1995). Sreening forreombinants in the proximity of the trp operon, the authors found average replaementsizes to be in the 8 to 14 kb range. Moreover, multiple replaements were deteted insome instanes. In a follow-up paper (Milkman, 1997), the level of sequene dissimilarity(from 1% to 3%) between reipient and donor strains was shown to orrelate with thedegree of abridgement by restrition endonuleases. The length of a typial reombinantin our study is still an order of magnitude less than that reported by MKane andMilkman (MKane and Milkman, 1995), but they based their onlusions on restritionsite analysis, whih has a limited ability to detet short fragments. Atual inorporationsin their experiments ould oneivably have been more frequent and shorter. Overlappingreombination events at partiular sites are also likely to ontribute to the net redutionsin observed inorporation sizes.



115Our approah detets signi�ant lusters of phylogenetially informative SNDs, butdoes not tell us whih lineages partiipated in the reombination. When presented withfour OTUs, reombination is possible between six undireted donor-reipient pairs: KO,CS, KS, OC, KC, and OS. These alternative histories an be jointly represented as aphylogeneti network (Figure 34).For example, a high soring KC segment indiates that the donor and reipientlineages are either K-12 and CFT, or O157:H7 and S. �exneri. Exatly whih pair oflineages is involved in the transfer an sometimes be determined by examining the jointdistribution of all seven SND patterns. Reombinant ativity in glyS and the four genesto its right is illustrated in Figure 35.The olored intervals in Figure 34 share a ommon feature: the presene of topolog-ially informative SNDs is aompanied by the absene of SNDs from two paired sistertaxa. For example, no 'O157 only' or 'Shigella only' SNDs are present in the KC/OSinterval inside glyS, strongly suggesting that the O157:H7 and S. �exneri lineages wereinvolved in the transfer. The other two intervals oinide with gene boundaries. Whenviewed in isolation, the genes yiaA and yiaH appear to be reasonable andidates forreombination. Yet only the KC reombinant inside the glyS gene is detetable by ourwhole genome signi�ane thresholds.Sequene divergene an redue the likelihood that homologous reombination oursbetween orthologous genes, but does not address the underlying mehanisms that leadto divergene in the presene of rampant reombination. The restrition of di�erentlineages of bateria to distint nihes ould at to prevent gene �ow, but in the aseof E. oli and Salmonella, the nihes overlap. The barriers to exhange might alsore�et more ative exlusion of foreign DNA by mehanisms suh as restrition enzyme



116

3,721,000 3,722,000 3,723,000 3,724,000 3,725,000 3,726,000

E.coli K−12 genome coordinates

Other

KO

KC

KS
S only
C only
O only
K only

glyS glyQ yiaH yiaA yiaB

Figure 35: The loation of all SNDs in a 5 kb region. In lusters demarated by ol-ored lines, note the orresponding absene of two more ommon types of SNDs. Threediamonds in lighter shades of blue, green, and red are ompatible tri-partitions. Col-ored lines demarate regions where the absene of lineage-spei� SNDs is o�set by aninrease in the orresponding reombinant pattern (for example, in yiaA, no K-12 or S.�exneri only SNDs).expression. Perhaps the most appealing explanation for the phenomenon would invokethe ativity of bateriophages, transposons and onjugation-promoting elements as thekey determinants of reombinational potential between taxa. Given the propensity ofthese mobile elements to partiipate in geneti exhange within speies and their oftennarrow host ranges, we might expet that they promote reombination within a speiesbut annot transfer to more diverse organisms. The lak of extensive reombination oforthologous sequenes between speies may result from a ompetition between bateriaand phage that an ativate rapid evolution of barriers to phage infetion. Our estimatefor a higher rate of homologous reombination among E. oli undersores the disrepanybetween rates of intraspeies reombination, whih appear to be quite ommon, and ratesof reombination of orthologous genes between speies suh as E. oli and Salmonella,whih appear to be muh less frequent (Daubin et al., 2003).



117Earlier omparisons of di�erent E. oli strains (Milkman, 1997, Dykhuizen and Green,1991, Reid et al., 2000, Guttman and Dykhuizen, 1994) found reombination among sev-eral distint sets of genes. The a�eted genes in these studies were not randomly seletedand may not have been representative of the shared gene omplement. Although ourmethod surveys all genes, the genomes we ompared are heavily skewed towards humanpathogens. As additional E. oli strains are sequened, the role of homologous reom-bination in baterial genome evolution will beome learer, and may fore reassessmentof traditional methods for desribing relationships among baterial taxa (Ohman et al.,2005, Feil and Spratt, 2001).Our analytial methods are straightforward here beause the number of unrootedtopologies is the same as the number of topologially informative bipartitions. Thisorrespondene deays exponentially as more operational taxonomi units are added.Sometimes going from four OTUs to �ve requires a new analyti proedure (for example,see (Zhaxybayeva et al., 2004)). We leave the hallenging problem of extension to moretaxa for future work.7.4 MethodsThe Mauve alignment tool produes an output �le ontaining separate alignments foreah loally ollinear blok. Conatenation of LCBs results in a G × M matrix ofnuleotides and gap symbols, where G is the number of genomes and M is the lengthof gapped alignments aross all bloks. Eah matrix olumn represents one site inthe onsolidated alignment. Restriting attention to olumns ontaining at least onenuleotide di�erene but no gaps results in a G×M ′ sub-matrix ∆ omposed solely of



118single nuleotide di�erenes. Automated sreening of the Mauve alignment (Figure 28)�ltered out SNDs in regions of poor alignment quality, resulting in a ∆ with dimension6 by 130,008.Numerous soring shemes have been devised to identify and assess the statistialsigni�ane of moleular sequene features on a genomi sale (Karlin and Brendel,1992, Karlin et al., 1991). One general approah alulates average sores within asliding window (for example, (Lobry, 1996, Sherer et al., 1994)). We use an equallyversatile method that omputes umulative sores based on a sore funtion, evaluatedat eah olumn of δ (see (Karlin and Altshul, 1990) for other appliations).Let Ξ = KS, KC, KO represent the three disordant SND patterns in Table 5,and let ψξ be the unrooted topology ompatible with pattern ξ ∈ Ξ. We de�ne threeomplementary sore funtions on SNDs to �lter on�iting phylogeneti signals:
Scoreξ(s) =























+D, if φ(s) = ξ

−D, if φ(s) ∈ Ξ \ {ξ}

−1, if φ(s) ∩ Ξ = ∅where s is a SND and φ(s) is the orresponding partition pattern in Table 5, and
D = 13. For a given ξ ∈ Ξ, the umulative sore at the nth olumn in ∆ is the partialsum:

Sξ
n =

n
∑

i=1

Scoreξ(si)

= Sξ
n−1 + Scoreξ(sn)

Sξ
0 = 0These sore funtions share a key harateristi of alignment soring shemes; both



119generate high soring segments that identify regions of interest. In the ase of alignments,a high sore segment represents a likely sequene homology. A signi�ant di�erenebetween our analysis and sequene alignment is that substitution matries are empiriallyderived from a test set (for example, PAM or BLOSUM). Here, D is not a parameterin an underlying stohasti model of evolution, but rather a tuning parameter in adiagnosti spei�ally designed to detet reombination. The value D = 13 was inspiredby the observation that the most frequent topologially informative pattern, KS, hasan observed frequeny of 7.6%, approximately the reiproal of 13. Alternative integervalues were tried and rejeted.Sore funtions generate high soring segments whenever they enounter a lusterof SND patterns supporting one topology but are disordant with other hoies. Fora given topology ψξ, we de�ne Scoreξ(η) to take on positive values when pattern η is
ξ and negative values otherwise (η 6= ξ). As disordant patterns are antithetial toone another, their weights should be equal to but opposite from the one being sanned.Neutral SND patterns are not individually disruptive to the underlying signal, but inaggregate they degrade the signal. These non-informative patterns are down-weightedand made integer-valued as in substitution matries.Hene, a large loal sore�the equivalent of a high soring segment�is evidene forreombination between two of the lineages paired by ξ (for example, ξ = KS assoiatesK-12 with S. �exneri and O157:H7 with CFT).Random walk plots onnet the dots between partial sums that are omputed fromSNDs as they our in ∆. By ontrast, random walks are translation invariant stohastiproesses governed by the relative frequenies in ∆, irrespetive of order. We augment



120the random walk transition probabilities with an additional 'terminator' state. Termi-nators break a global alignment into several smaller sub-alignments, and are used torepresent alignment fragmentation aused by 'large' gaps (> 15 bp in one lineage), spu-rious alignments, or LCB boundaries (Figure 28). Aordingly, for eah ξ ∈ Ξ, randomwalk inrements are distributed aording to the following probabilities:
Xξ(S) =







































+D with Pr(φ(s) = ξ) = πξ

−D with Pr(φ(s) 6= ξ) = π−ξ

−1 with Pr(φ(s) = ξ) = πother

−100, 000 with Pr(s is a break in the alignment) = πbreakwhere D = 13, πKO = 0.048, πKS = 0.076, πOS = 0.045, πother = 0.826, πbreak =

0.005 and π−ξ de�ned as:
π−ξ =

∑

η∈Ξ\{ξ}

1− πother − πbreak − πξSine the expeted value E(Xξ) < 0,∀ξ, sums of these identially distributed vari-ables generate transient random walks. Random stopping times, de�ned reursivelyby:
τ0 = 0

τ1 = min{i : Si < S0}

τk+1 = min{i : Si < Sτk
} for Sk =

k
∑

i=1

Xξ
iform a stritly dereasing set of ladder points. Though Sk depends on ξ, we suppressit for ease of exposition. The horizontal distanes between onseutive ladder points
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Figure 36: Statistial justi�ation of threshold values −100, 100, and 170 for topologiesKO, KC, and KS, respetively�used to identify reombination events. Values on thex-axis are maximal loal sores. EVD probability densities for the maximum maximalloal sore attained by random walks of length M ′ appear as bell-shaped urves with apronouned skew to the right. Threshold values, demarated by vertial lines, orrespondto onservative signi�ane levels (α = 0.05) for these distributions.
τk+1 − τk, are alled ladder epohs. The loal reord height (LRH) of the kth epoh isde�ned by:

LRHk = max
τk−1≤t<τk

{St − Sτk−1
} ≥ 0Ladder epohs measure the size of a high soring segment in SND units rather thanbase pairs (hain length M ′ versus M). The number of ladder epohs in a random walkof size N is denoted by Λ(N). The distribution of the maximum value in a sequene ofloal reord heights is an extreme value distribution (EVD) with parameterization:

Pr( max
j≤Λ(N)

LRHj > x) = exp(−NKe−µk)Here µ is the positive solution of an equation involving the moment generating fun-tion:
mgfξ(. . . ) =

∑

j

πje
µXξ(sj)

= 1The value of µ is solved for numerially. For ψKC , the equation:
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mgfKC(µ) = 0.045e13µ + .124e−13µ + .826e−µ + .005e−100,000µ = 1has a positive solution at µ = 0.1354 (µ = 0 is a trivial solution). The value of K anbe omputed as a rapidly onverging in�nite sum (see Appendix of (Karlin and Altshul,1990)). We hose instead to simulate 2, 000 random walks of size N = 10, 000 using thestatistial pakage R (http://r-projet.org). The largest loal reord height attainedover the ourse of eah simulation is saved. The funtional form of the EVD (equation1) is then �t to a probability histogram of 2, 000 stored maxima. The estimated valuesof K and Λ are ombined with an N = M ′ to adjust for the atual alignment size(M ′ = 129, 000 after exluding the atypial region) in eah EVD. The densities of thethree EVDs are plotted in Figure 36.Ladder points, ladder epohs, and loal reord heights are easily omputed with afew simple R ommands. Finding minimal signi�ant lusters�a smallest possible lusterof SNDs with a signi�ant sore�is more hallenging. A naïve approah takes eah SNDwithin a high soring segment as the start of some loal sore, then iteratively addssuessive terms to loal sores in parallel until one of the sums exeeds the threshold.The SNDs produing that sum onstitute the �rst MSC. The proess ontinues on theremaining sums to seek out additional, non-overlapping MSCs. The algorithm is O(n2)in the number of SNDs. Suh a brute fore approah works here beause alignment gapssplit the problem into 186 small piees, the largest of whih ontains fewer than 700SNDs.



1237.5 AknowledgmentsA version of this hapter appeared as Mau, Glasner, Darling, and Perna (2006). NTPand BM oneived the analysis, BM and AED drafted the manusript and analyzeddata. JDG assisted with interpretation of the results.



124Chapter 8
Analysis of gene �ux in enterobateria
Genome omparisons of enteri bateria demonstrate that an isolate of any given speieswill ommonly ontain substantial novel geneti ontent not found in other isolates ofthe same speies (Tettelin et al., 2005). The mehanism by whih bateria aquire andmaintain suh lineage-spei� ontent remains obsure, however the onsensus belief isthat suh ontent has been aquired by lateral gene transfer (Ragan and Charlebois,2002). One hypothesis suggests that novel ontent, oasionally referred to as ORFans,is ommonly introdued into the hromosome by phage (Daubin and Ohman, 2004,Fisher and Eisenberg, 1999), and that phage harbor a wealth of biodiversity (Edwardsand Rohwer, 2005, Sullivan et al., 2006). Indeed, the high A+T ontent of many novelgenes relative to the baterial hromosome supports suh a hypothesis. However not allnovel genes show a distint A+T ontent or odon usage bias relative to the averagehromosomal distributions. One possibility is that genes without high A+T ontentare also of phage origin and had high A+T ontent when they originally entered thehromosome, but have sine ameliorated through diretional seletion to appear similarto the rest of the hromosome. Thus, suh genes are thought to have been resident inthe baterial hromosome for a substantially longer period of time than novel genes withhigh A+T ontent. Another likely explanation involving phage transdution is that thegene had only reently been aquired by the phage population and the sequene had not



125yet gained an A+T bias prior integration with the reipient baterial hromosome.Given that mirobes somehow rapidly aquire novel ontent, we must also onsiderthe pattern of gene loss that allows mirobes to maintain their harateristially ompatgenomes. If the aquisition rate and the deletion rate are approximately equal, wemight expet to see arbitrary deletions of ore genome ontent at a frequeny equal toobservations of novel ontent, unless deletions of aquired ontent were strongly favored.Frequent deletion of aquired ontent ould arise due to either seletive pressure ormutation bias, or some ombination thereof. Spei�ally, deletions in preexisting genesould be strongly seleted against, or aquired geni ontent ould be inherently unstable,for example if it were �anked by mobile geneti elements.When novel genes integrate into the hromosome, we may ask how they go on tointegrate with the host mirobe's regulatory system. Do suh novel genes slowly ometo be expressed by hane mutations upstream of the oding region? Given that enteribateria appear to have a mutational bias in favor of small deletions (Mira et al., 2001),it seems di�ult to believe that a gene would be maintained long enough to aquire afuntional promoter through random mutation before it were to be destroyed.Is it possible that novel genes ome preloaded with funtional promoters and tran-sription fator binding sites? If this is the ase, then it seems extremely likely that theregulatory logi upstream of the novel gene evolved in a losely related host, and thusthe gene ould be onsidered to be already �naturalized� to the host mirobe, with onlysome �ne tuning neessary for optimum �tness. In this senario the gene may appearnovel simply beause it is not yet part of our sequene database, but it is hardly novelto the reipient organism.



126Organism Genome sizeE. oli K12 MG1655 4654221E. oli O157:H7 EDL933 5623806E. oli CFT073 5231428Shigella �exneri 2457T 4988914Salmonella enteria Typhi Ty2 4791961Yersinia pestis KIM 4781914Yersinia pseudotuberulosis IP32953 4840899Erwinia hrysanthemi 3937 4922802Erwinia aratovora SCRI1043 5064019Table 7: These nine enteri bateria ompose a phenotypially diverse set of organisms.The E. oli, Shigella, Salmonella, and Yersinia are human pathogens, while the Erwiniaare plant pathogens. E. oli K12 MG1655 is a non-pathogeni laboratory strain.A third intriguing possibility is that the operon struture of the mirobial hromo-some and the mirobial gene expression system has evolved to expliitly favor aquisitionof novel geneti ontent and its rapid inorporation into the host regulatory program.In suh a model, novel genes ould potentially integrate into an existing operon andimmediately beome expressed, without disrupting the expression of neighboring genes.In fat, previous studies have demonstrated a propensity for novel genes to integrateinto existing operon struture (Prie et al., 2006).To better understand the role of gene aquisition and loss in bateria we analyzemultiple-genome alignments of enteri bateria. We �rst study patterns of gene �uxamong a group of nine enteri bateria from a broad phylogeneti spetrum (listed inTable 7), then narrow the sope of our analysis to a group of twelve omplete E. oliand Shigella genomes (Table 8). By analyzing a set of distantly related taxa and aseond group of losely-related taxa, we hope to gain insight into the rate at whihreent mutations beome �xed in mirobial populations.



127Organism Genome size Mode of pathogenesisE. oli K12 MG1655 4654221 Non-pathogeniE. oli O157:H7 EDL933 5623806 EHECE. oli O157:H7 Sakai 5594477 EHECE. oli HS 4643538 Non-pathogeniE. oli E24377A 4980187 ETECE. oli CFT073 5231428 UropathogeniE. oli UTI89 5179971 UropathogeniShigella boydii 227 4646520 InvasiveShigella �exneri 2457T 4988914 InvasiveShigella �exneri 301 4828821 InvasiveShigella dysenteriae 197 4551958 InvasiveShigella sonnei 046 5039661 InvasiveTable 8: Completely sequened E. oli isolates presently analyzed. Many of these E.oli isolates are human pathogens, possibly skewing the results of our analysis. EHECindiates enterohaemorrhagi E. oli, while ETEC indiates enterotoxigeni E. oli.8.1 ResultsThe Progressive Mauve alignment system omputes an alignment of the nine enterigenomes listed in Table 7 using 24 hours of ompute time on a 2.8GHz Pentium 4 CPU.The resulting alignment ontains 425 Loally Collinear Bloks with a total average lengthof 18.7Mbp of genomi sequene. Figure 37 shows a omparison of the struture of eahgenome as drawn by the Mauve visualization system. We then apply the bakbonedetetion algorithm desribed in Chapter 5 to detet regions onserved among two ormore genomes. Using a random-walk sore threshold of 2727 yields a total of 23498segments onserved among two or more taxa. Of these, 7658 segments are less than5nt in length and result from merging pairwise segmental homology preditions withslightly di�erent endpoints. We disard the short segments, yielding a set of 15840high-on�dene segments onserved among two or more genomes. Inlusion of segments
> 5nt present in only a single genome under study yields a total of 31197 segments.
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Figure 37: Mauve visualization of an alignment of four E. oli and Shigella genomes, oneSalmonella, two Yersinia, and two Erwinia genomes. The alignment ontains 346 loallyollinear bloks and numerous lineage-spei� segments. Eah lineage has undergonesubstantial genomi rearrangement, resulting in the srambled synteny portrait shownhere.



129Clustering of variable segmentsOf the 31197 total segments, only 2810 are onserved among all taxa. If all di�erenes ingene ontent arose from a single deletion or insertion event at a unique lous, the 2810segments onserved among all taxa ould aommodate a maximum of 2811 gene �uxevents, regardless of the phylogeneti relationship among taxa. Given that number ofsegments onserved among subsets of the taxa (31197-2810=28387) is muh larger than2810, it stands to reason that multiple events frequently our at the same site and that�hotspots� of gene �ux must exist.A gene ontent phylogenyWe base our analysis on a genome-ontent guide tree omputed by Progressive Mauve.The Progressive Mauve algorithm applies Neighbor-Joining to a distane matrix basedon a ombination of shared gene ontent and sequene identity. The resulting treeminimizes the total deviation between pairwise distanes and branh lengths. We usethe genome-ontent guide tree omputed by Mauve as a basis for our analysis of patternsof gene �ux. The inferred genome-ontent guide tree may on�it with a phylogeny basedon nuleotide substitution data and may also on�it with the true phylogeny. For ouranalysis of gene �ux, errors in phylogeneti inferene will likely ause our subsequentanalysis to underestimate the true number of gene �ux events, beause the tree is biasedtowards a topology that gives maximum onservation of gene ontent. Thus, we onsiderour estimates of gene �ux to be onservative.



130
Yersinia pestis KIM

Yersinia pseudotuberculosis IP32953

Erwinia chrysanthemi 3937

Erwinia carotovora SCRI1043

Salmonella enterica Typhi Ty2

E. coli K12 MG1655

E. coli O157:H7 EDL933

Shigella flexneri 2A 2457t

E. coli CFT073

4.4/5.2

2.85/7.12
1.22/18.72

1.69/15.0

4.17/6.09

3.75/7.15

3.54/8.23

2.96/9.79

C
la

d
e

 “A
”

C
la

d
e

 “B
”

C
la

d
e

 “C
”

C
la

d
e

 “D
”

Core/Pan genome size in MbpFigure 38: The pan-genome and ore-genomes of lades within the family Enterobate-riaae. A genome-ontent phylogeny and multiple genome alignment was onstrutedfor nine enteri bateria using Progressive Mauve. The tree has been midpoint-rootedplaing Yersinia as an outgroup here. The ore genome size given at internal nodesrepresents the average amount of genome sequene onserved among all taxa below thatnode. The pan genome size represents the total amount of unique sequene present inall taxa below a given node. Homologous sequene present in two or more genomes getsounted only one towards the total pan-genome size.8.1.1 The enteri ore genomeArmed with a gene-ontent phylogeny, we onsider the portion of the genome onservedamong all members of a given lade to be the �ore-genome� for that lade (Wertz et al.,2003). We de�ne the omplementary notion of a �pan-genome� as genome sequenepresent in any one or more members of the lade (Tettelin et al., 2005). The genome-ontent phylogeny for the nine enteri bateria and the orresponding ore- and pan-genome size for eah lade is shown in Figure 38.We analyze the funtional distribution of genes present in the enteri ore genome.Of the 4307 annotated CDS in E. oli K12, 29.6% of them have at least some portion



131onserved among all nine enteri genomes. Genes in E. oli K12 have been annotatedwith a gene funtion ontology alled Multi-Fun, whih was designed to spei�ally ap-ture biologial aspets of enteri bateria (Serres and Riley, 2000). As E. oli K12 isthe only genome with a robust Multi-Fun annotation, we restrit our analysis to ladesontaining K12. We label lades as "A", "B", "C", and "D", from most diverse tomost spei� as shown in Figure 38. Multi-Fun ategories found to be under- and over-represented among genes in the ore genome are shown in Table 9. We report the perentof onserved genes in eah funtional ategory, along with a χ2 goodness-of-�t statistifor eah ategory. We do not report p-values beause a single gene may be assigned toseveral Multi-Fun ategories, thus dependenies exist among ategories.As we would expet, several funtional ategories are heavily overrepresented amongonserved genes. Spei�ally, genes with produts involved in ribosomal struture, pro-tein information transfer, ell division, and some aspets of metabolism show strongonservation. Some funtional ategories show signi�ant underonservation, most no-tably gene produts loalized to the outer membrane, arbon utilization gene produts,and eletrohemial-driven transporter gene produts.We proeeded to ompare the funtional distributions of genes onserved at eah su-essive sublade that inludes E. oli K12, i.e. Clades "B", "C", and "D". Di�erenes inonserved funtional ategories are indiated by the two leftmost olumns in Tables 9, 10,and 11. Interestingly, outer membrane proteins are signi�antly under-onserved onlyat lades inluding the Yersinia genus, and arbon utilization gene produts are under-onserved only when the Erwinia genus is inluded.
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U D NumGenes GenesInCat Perent χ2 MfunLevel2Name1 43 2.33 10.8 ell struture; pilus"17 245 6.94 42.6 extrahromosomal; prophage genesand phage related funtions""29 200 14.5 15.5 transport; Eletrohemialpotential driven transporterss* 11 75 14.7 5.67 loation of gene produts;outer membrane"236 1240 19 47 Unknown; No MultiFun Tag80 405 19.8 13.3 metabolism; arbon utilization121 285 42.5 15.8 metabolism; energy metabolism, arbon49 103 47.6 11.2 metabolism; maromoleule degradation123 255 48.2 29.8 transport; Primary Ative Transporterss77 155 49.7 21 information transfer; DNA related437 828 52.8 150 loation of gene produts; ytoplasm"33 57 57.9 15.4 ell struture; peptidoglyan (murein)"265 442 60 137 metabolism; building blok biosynthesiss219 359 61 119 information transfer; protein related45 67 67.2 31.8 ell proesses; ell division"59 68 86.8 74.9 ell struture; ribosome"Table 9: Annotated funtions for produts of genes that have some portion onservedamong all nine enteri genomes. 29% of all genes annotated in E. oli K12 show evidenefor onservation. Funtional ategories with a χ2 value less than 5 not shown. Anasterisk(*) in olumns U and D indiates that the funtional ategory appears di�erentlyat lades above (U) and below (D) this lade in the phylogeny.
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U D NumGenes GenesInCat Perent χ2 MfunLevel2Name21 245 8.57 59.8 extrahromosomal; prophage genesand phage related funtions""6 43 14 7.18 ell struture; pilus"* 54 200 27 8.14 transport; Eletrohemialpotential driven transporterss339 1240 27.3 47.8 Unknown; No MultiFun Tag* 118 405 29.1 11.4 metabolism; arbon utilization* * 182 367 49.6 9.02 metabolism; entral intermediary metabolismm* 140 255 54.9 14.8 transport; Primary Ative Transporterss* 141 253 55.7 16.3 metabolism; maromoleules(ellular onstituent)biosynthesiss160 285 56.1 19.4 metabolism; energy metabolism, arbon97 155 62.6 20.4 information transfer; DNA related531 828 64.1 124 loation of gene produts; ytoplasm"67 103 65 16.6 metabolism; maromoleule degradation246 359 68.5 75 information transfer; protein related336 442 76 147 metabolism; building blok biosynthesiss* 44 57 77.2 20.2 ell struture; peptidoglyan (murein)"54 67 80.6 28.2 ell proesses; ell division"62 68 91.2 45.4 ell struture; ribosome"Table 10: 39.7% of K12 genes are onserved among members of lade "B". Funtionalategories with a χ2 value less than 5 not shown. An asterisk(*) in olumns U and Dindiates that the funtional ategory appears di�erently at lades above (U) and below(D) this lade in the phylogeny.
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U D NumGenes GenesInCat Perent χ2 MfunLevel2Name* 1 65 1.54 41.9 extrahromosomal; transposon related"31 245 12.7 109 extrahromosomal; prophage genesand phage related funtions""* 15 43 34.9 6.77 ell struture; pilus"* 717 1240 57.8 17.2 Unknown; No MultiFun Tag* 130 155 83.9 6.17 information transfer; DNA related710 828 85.7 40.9 loation of gene produts; ytoplasm"* 89 103 86.4 5.46 metabolism; maromoleule degradation255 285 89.5 20.4 metabolism; energy metabolism, arbon322 359 89.7 26.2 information transfer; protein related227 253 89.7 18.5 metabolism; maromoleules(ellular onstituent)biosynthesiss* 62 67 92.5 6.23 ell proesses; ell division"413 442 93.4 44.1 metabolism; building blok biosynthesiss* 66 68 97.1 8.81 ell struture; ribosome"Table 11: 67.5% of K12 genes show evidene for onservation among members of lade"C". Funtional ategories with a χ2 value less than 5 not shown. An asterisk(*) inolumns U and D indiates that the funtional ategory appears di�erently at ladesabove (U) and below (D) this lade in the phylogeny.



1358.1.2 Variable genes, deletion, and lateral transferA number of segments are onserved among subsets of the genomes under study. Wehave analyzed these segments with an eye towards genes that have undergone lineage-spei� deletion or apparent lateral transfer. Given an internal tree node at whih bothhild nodes are also internal nodes, we de�ne the notion of a Hop 2 segment as a regionwhih is present in some taxa below both hild nodes, but not present in all taxa beloweither hild. For example, a Hop 2 at the root of our tree is a segment present in onlyone of the two Yersinia, and also present in at least one member of lade "B", but not allmembers of lade "B". A Hop 2 pattern an only be explained by multiple independentdeletions of the same segment or lateral gene transfer. Similarly, we de�ne a Hop 1segment at an internal node as a region whih is present in all of one hild's taxa, andpresent in some, but not all, of the other hild's taxa. An example at the root nodewould be a segment missing from one of the two Yersinia but universally present in allof Erwinia, Salmonella, Shigella, and E. oli.We analyze the presene of Hop 1 and Hop 2 segments among members of Clades "A"and "B". Clade "A" shows evidene for 1138 Hop 1 segments, totalling 216Kbp, and 64Hop 2 segments, totalling 9.9Kbp. The Hop 2 segments are andidates for lateral transferbetween the Yersinia genus and members of Clade "B". Narrowing our phylogenetisope to Clade "B", we �nd evidene for 1182 Hop 1 segments totalling 140Kbp. Thereare 238 Hop 2 segments at this lade, totalling 30.3Kbp.Analysis of gene funtions requires that the gene be present in K12. With thatin mind, we analyzed the funtional distribution of Hop segments in Clades "A" and"B". At Clade "A", 4.99% of K12 genes have some portion ontained in a Hop 1segment. Two funtional ategories show signi�ant overrepresentation: "transport;



136NumGenes GenesInCat Perent χ2 MfunLevel2Name2 245 0.816 16.8 extrahromosomal; prophage genesand phage related funtions""80 1240 6.45 5.64 Unknown; No MultiFun Tag82 700 11.7 9.11 ell struture; membrane"66 555 11.9 8.02 loation of gene produts; inner membrane"42 285 14.7 13.6 metabolism; energy metabolism, arbon24 155 15.5 9.23 information transfer; DNA related12 67 17.9 7.2 ell proesses; ell division"12 66 18.2 7.5 ell struture; surfae antigens(ECA, O antigen of LPS)""16 84 19 11.3 metabolism; metabolism of other ompounds49 253 19.4 36.2 metabolism; maromoleules(ellular onstituent)biosynthesissTable 12: Funtional ategories of genes in K12 that show evidene for lineage-spei�loss (Hop 1) among members of Clade "B". Several ategories appear prone to lineage-spei� loss. Funtional ategories with a χ2 value less than 5 not shown.Primary Ative Transporters" and "loation of gene produts; periplasmi spae" with8.24% and 10.4% ontaining Hop 1 segments, respetively. Only 0.25% of K12 genes arepart of Hop 2 segments at Clade "A", and no ategories are signi�antly overrepresented.Among members of Clade "B", 8.41% of K12 genes partiipate in a Hop 1 segment.Several funtional ategories show signi�ant overrepresentation in Hop 1 segments atClade "B", and are listed in Table 12. Some overrepresented ategories make intuitivesense for pathogeni bateria, for example, membrane proteins and surfae antigens.Other funtional ategories suh as DNA related information transfer show an unex-peted tendeny towards lineage-spei� deletion. Only 0.88% of K12 genes partiipatein Hop 2 segments, and no funtional ategories show signi�ant overrepresentation.Choie of taxa is an important onsideration for our analysis of Hop segments. Be-ause Hop 2 segments an only be deteted when both sublades below an internal nodehave at least two or more member genomes, our method annot detet suh segments



137at Clades "C" and "D". Adding another Salmonella genome and the E. oli UTI89genome would enable detetion of Hop 2 segments at "C" and "D". Moreover, sam-pling additional taxa at any lade would give more information about patterns of geneonservation both within and aross lades.Genes unique to E. oliWe ontinued by asking, �What, if any, genes tend to be spei� to the E. oli?� Weidenti�ed all genomi segments that showed homology only among members of lade "D",and analyzed their funtional distribution. The results, shown in Table 13, indiatethat very few funtional ategories are signi�antly unique to E. oli, while a largenumber are signi�antly non-unique. Interestingly, genes of unknown funtion are theonly ategory apart from reombination-prone ategories suh as pili and transposonsthat show signi�ant bias towards uniqueness in E. oli. Thus, we onlude that �Wedon't (yet) know what makes an E. oli an E. oli.�8.1.3 An analysis of twelve E. oli and ShigellaHaving examined the gross hanges in geneti ontent that exist among members ofthe Enterobateriaae, we now turn towards a detailed analysis of E. oli and Shigellaisolates. Although we �nd few funtional gene ategories that distinguish E. oli andShigella from the remaining enteri bateria, these mirobes harbor a wealth of genetidiversity within their population that may be exploited to better understand their evo-lution.We again apply the Progressive Mauve alignment system to align the twelve genomeslisted in Table 8. The resulting alignment ontains 345 Loally Collinear Bloks. There



138
NumGenes GenesInCat Perent χ2 MfunLevel2Name2 68 2.94 17.9 ell struture; ribosome"3 57 5.26 12.7 ell struture; peptidoglyan (murein)"40 359 11.1 48.5 information transfer; protein related8 67 11.9 8.37 ell proesses; ell division"54 442 12.2 53.7 metabolism; building blok biosynthesiss32 253 12.6 29.4 metabolism; maromoleules(ellular onstituent)biosynthesiss110 828 13.3 90 loation of gene produts; ytoplasm"38 285 13.3 30.8 metabolism; energy metabolism, arbon16 103 15.5 8.66 metabolism; maromoleule degradation16 97 16.5 7.22 metabolism; energy prodution/transport65 367 17.7 23.2 metabolism; entral intermediary metabolism16 90 17.8 5.63 transport; Transporters ofUnknown Classi�ationn22 123 17.9 7.58 ell proesses; adaptation to stress29 155 18.7 8.46 information transfer; DNA related23 115 20 5.11 ell proesses; protetion54 255 21.2 9.21 transport; Primary Ative Transporterss81 336 24.1 6.41 information transfer; RNA related134 555 24.1 10.5 loation of gene produts; inner membrane"113 459 24.6 7.65 transport; substrate175 700 25 10.5 ell struture; membrane"475 1240 38.3 15.9 Unknown; No MultiFun Tag25 43 58.1 9.27 ell struture; pilus"197 245 80.4 181 extrahromosomal; prophage genesand phage related funtions""60 65 92.3 74.3 extrahromosomal; transposon related"Table 13: The genes that make E. oli an E. oli. Genes that have at least one segmentpresent only in lade "D" (E. oli and Shigella) are identi�ed and listed by funtionalategory. Funtional ategories with a χ2 value less than 5 not shown. What makesE. oli an E. oli? We don't know. K12 genes with unknown funtion are signi�antlymore likely to be unique to E. oli.



139are 1166 segments onserved among all E. oli and Shigella along with 12950 othersegments present in some but not all genomes. One again, strong evidene exists thatthese mirobes have �hotspots� of gene �ux.Progresive Mauve omputes a genome-ontent guide tree for the twelve genomeswhih plaes the E. oli and Shigella into separate lades (Figure 39). Studies of thephylogeneti signal in nuleotide substitutions among these mirobes has revealed thatthey have undergone substantial amounts of homologous reombination (See Chapter 7).Eah genome is a mosai of many phylogeneti histories and thus a single 'true' whole-genome phylogeny does not exist for these taxa.Funtional distribution of onserved and lineage-spei� ontentWe analyzed the funtional distribution of genes in E. oli K12 that ontain at leastone segment onserved among all E. oli and Shigella. The results, shown in Table 14,indiate that a small number of funtional ategories show signi�ant over- and under-onservation.At the root of our genome ontent guide tree there are 727 Hop 1 segments withtotal length 340Kbp, and 1451 Hop 2 segments with total length 522Kbp. Given thatE. oli and Shigella are one and the same speies and undergo frequent homologousreombination (see Chapter 7), the relatively large number of Hop 2 segments relativeto Hop 1 is not surprising. These segments likely result from lateral geneti transfer, al-though multiple independent deletion events may play a role in some ases. The numberof Hop 2 segments an not be used to diretly estimate the number of reombinationevents that have taken plae, as multiple Hop 2 segments that support the same par-titioning of taxa may be oloated on the hromosome and giving evidene for only a
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E. coli K12 MG1655

E. coli O157:H7 EDL933

S. flexneri 2A 2457t

E. coli CFT073

S. flexneri 2A 301

E. coli UTI89

E. coli HS

E. coli E24377A

E. coli O157:H7 RIMD

S. boydii 227

S. dysenteriae 197

S. sonnei 046

2.98/12.0

3.68/8.55

4.13/5.63

4.21/5.05

3.97/7.32

5.48/5.74

4.66/5.74

3.24/7.67

3.31/6.81

3.76/5.95

4.74/5.10

0.1 Core/Pan genome size in MbpFigure 39: The pan-genome and ore-genomes of E. oli and Shigella. A genome-ontent phylogeny and multiple genome alignment was onstruted for twelve genomesusing Progressive Mauve. A midpoint-root has been plaed on the branh onneting E.oli and Shigella. The twelve mirobes studied here are ommonly onsidered to be thesame speies, yet harbor a tremendous amount of geneti diversity. Eah mirobe hasan average genome size of 5Mbp, but on average ontains only 3Mbp whih is onservedamong all taxa shown here. The pan-genome size of 12Mbp re�ets all unique genetiontent in these taxa, whih averages to 750Kbp per sequened genome.



141NumGenes GenesInCat Perent χ2 MfunLevel2Name3 65 4.62 38.8 extrahromosomal; transposon related"28 245 11.4 117 extrahromosomal; prophage genesand phage related funtions""15 43 34.9 7.13 ell struture; pilus"677 828 81.8 20.8 loation of gene produts; ytoplasm"213 255 83.5 8.25 transport; Primary Ative Transporterss130 155 83.9 5.25 information transfer; DNA related248 285 87 14 metabolism; energy metabolism, arbon62 67 92.5 5.58 ell proesses; ell division"410 442 92.8 37.5 metabolism; building blok biosynthesissTable 14: Funtional distribution of genes showing onservation among all E. oli andShigella. 68.6% of genes in E. oli K12 show evidene for onservation. Funtionalategories with a χ2 value less than 5 not shown. Interestingly, both DNA InformationTransfer and Building Blok Biosynthesis ategories show signi�antly above averageonservation. These two funtional ategories were previously identi�ed as espeiallyprone to homologous reombination.single reombination event.Although only a small number of funtional ategories show unusual patterns of on-servation, several funtional ategories show evidene for interesting patterns of geneloss and potential lateral transfer. A total of 10.9% of E. oli K12 genes ontain Hop 1segments, with the funtional ategories: "Unknown", "transport; Eletrohemial po-tential driven transporters", and "metabolism; metabolism of other ompounds" showingover-representation. 8.66% of E. oli K12 genes partiipate in Hop 2 segments at theroot node, and the funtional distribution is shown in Table 15.Substantial intergeni variabilityWhen gene �ux ours inside a pre-existing gene, it very likely breaks the gene. Weevaluated the frequeny with whih gene �ux ours within annotated genes, versusentirely intergeni regions. To do so, we de�ne a variable site in E. oli and Shigella as



142NumGenes GenesInCat Perent χ2 MfunLevel2Name138 1240 11.1 8.71 Unknown; No MultiFun Tag15 75 20 11.1 loation of gene produts; outer membrane"14 66 21.2 12 ell struture; surfae antigens(ECA, O antigen of LPS)""Table 15: Funtional ategories that are overrepresented in Hop 2 segments between E.oli and Shigella. 8.66% of genes in E. oli K12 partiipate in Hop 2 segments at thisnode. Funtional ategories with a χ2 value less than 5 not shown.any site between two adjaent segments onserved among all taxa (universally onservedsegments). To avoid trivial variable sites due to small indels and slightly mispreditedhomology boundaries, we onsider only variable sites longer than 15nt. Given theseriteria, there are 809 variable sites between universally onserved segments. Of these,23 lie entirely within the boundaries of a single annotated gene and are likely multi-alleligenes or misannotated pseudogenes (a detailed inspetion reveals both ases). A further260 of the 809 variable sites have endpoints ompletely outside annotated CDS in alltwelve genomes. 174 of the 260 variable segments with intergeni endpoints ontain CDS,implying that novel genes have been either gained or lost at these sites. Finally 86 of the260 intergeni variable segments ontain no annotated CDS, implying that substantialvariability exists in wholly-intergeni regions. Given that the vast majority of an enterigenome odes for protein, our observation that 260 of 809 variable segments (32%) haveendpoints outside annotated gene boundaries supports the notion that a strong seletivebias exists against gene �ux that breaks genes.Using the E. oli K12 annotation as a referene, we examined the harateristisof variable intergeni segments. Genes in enteri bateria are frequently transribedtogether in operons. Genes that are o-expressed in operons always our adjaent toeah other and are transribed from the same strand. We lassify neighboring genes as



143either onverging, where the 3' end of both genes are adjaent, diverging, where the 5'end of both genes are adjaent, or inline, where the genes are adjaent and on the samestrand.Of the 260 intergeni variable sites, we �nd that 96 are �anked by onverging CDS,39 are �anked by diverging CDS, and 125 are �anked by inline CDS. To determinewhether suh a pattern would be observed merely by hane, we ounted all intergenisites with non-overlapping genes and performed a χ2 test. There are 549 onverging,629 diverging, and 2549 inline CDS pairs in E. oli K12 that do not overlap, for atotal of 3727 non-overlapping CDS pairs. We observe a signi�ant overrepresentation ofvariable segments in onverging regions (χ2 = 89.17, p =, 2 d.f.), the number of variablesegments in diverging region does not signi�antly deviate from expetation, and we seea signi�ant under-representation of variable segments between inline CDS (χ2 = 14.72,
p = , 2 d.f.).The high number of variable sites at onverging CDS relative to diverging CDS is apattern that would be expeted if mutations at onverging regions were less detrimentalto the organism than mutations at diverging regions. In ases where new genes werenot gained or lost, our observations of intergeni variability at inline CDS ould be anartifat of subtle tuning of the mirobes regulatory program by forming or destroyingoperon strutures. In ases where genes have been aquired, they may be inorporatinginto existing operon struture.Variability around tRNA and small regulatory RNAsWe examined the propensity of variable segments to luster in the neighborhoods oftRNA and small non-oding RNAs annotated as mis_RNA in the E. oli K12 genome.



144There are 49 annotated mis_RNA features in E. oli K12. Of our 260 variable inter-geni segments, 16 of them either ontain (7) or immediately neighbor (9) a mis_RNAfeature. We �nd muh greater variability in the neighborhood of mis_RNA than wouldbe expeted by hane alone (χ2 = 50.44, p ≤ 0.001, 1 d.f.). tRNA are well known tobe assoiated with so-alled Genomi Islands of variability (Haker and Kaper, 2000).There are 88 annotated tRNA in E. oli K12. We �nd 20 variable segments that eitherimmediately neighbor (3), or ontain (17) tRNA features. As expeted, tRNA are asso-iated with variable segments to a greater degree than hane would ditate (χ2 = 34.78,
p ≤ 0.001, 1 d.f.).AlternalogsWhen a variable site has undergone a single insertion or deletion event it partitions thetaxa into two groups: those with a �null� allele and those with either novel ontent orthe anestral ontent. If multiple insertion or deletion events our at the same site, wemay see a pattern where eah genome has an alternate non-null allele at a the variablesite. We refer to suh variable sites whih have at least two di�erent non-null alleles asalternalogs.Of the 809 total variable sites, 285 of these �t our de�nition of an alternalog. Seven ofthese are ompletely ontained within annotated gene boundaries in all twelve genomesand are likely multi-alleli genes. 97 alternalog sites have intergeni endpoints, of whih21 ontain no annotated CDS internally implying they are entirely intergeni alternalogs.The remaining alternalog sites span gene boundaries, but are not entirely ontainedin any gene. A small number of alternalogs neighbor or ontain mis_RNA featuresin E. oli K12, however the distribution is not as skewed as when all variable sites



145are onsidered. There are 14 alternalog sites that either neighbor (1) or ontain (13)tRNA annotated in K12, a signi�ant deviation from what would be expeted by hane(χ2 = 45.27, p ≤ 0.001, df=1).Figure 40 illustrates a series of genes related to �mbriae and pilus prodution wheremultiple gene �ux events have olloated. The resulting genomi struture is a pathworkwith many genes di�erentially lost or gained in eah genome.8.2 DisussionWe have demonstrated that populations of enteri bateria harbor a wealth of genetidiversity. Any E. oli isolate is likely to have between 10% and 20% sequene ontent notobserved in other E. oli isolate. As we onsider a progressively broader taxonomi sopein our analysis, the total amount of ore genome ontent dereases, eventually reahingapproximately 1Mbp. Given the extreme amount of diversity within the E. oli andShigella, it is lear that portions of the ore-genome are resistant to gene �ux, otherwiseno onserved sequene would remain over the long period of divergene between theenteri speies we study here. Thus, it appears that novel ontent is usually transient,but oasionally beomes �xed in the population through positive seletion.In some ases, newly aquired ontent may appear to replae ontent that previouslyexisted at a given lous. The novel ontent may initially �infet� the �rst member of thepopulation through simple insertion, and subsequent deletion of adjaent ontent wouldyield an apparent replaement, or alternalog. If the novel ontent is advantageous,population members with the replaement may experiene positive seletion. Previousstudies suggest that the population size of E. oli may be very large (Berg, 1996). If
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Figure 40: Mauve visualization of the mosai struture of the yfOPQRSTUV geneluster and neighboring regions. The yf gene produts have �mbrial and pilus-relatedfuntions. Regions onserved among all nine taxa are shown in pink, and the height ofthe pink similarity plot indiates the degree of onservation for suh regions. Segmentsonserved among only the Yersiniae are shown in yellow, while other olors representregions onserved among di�erent subsets of the taxa. The white retangular bloksindiate the loations of annotated genes. The yf gene luster is present only in the E.oli and Shigella. The yfO gene appears to have three di�erent alleles, one shown asgreen in the third and �fth genomes (O157 and Shigella) , the other two alleles shownas white in the �rst and seond genomes (K12 and CFT073).



147mirobial population sizes are indeed large, we would expet geneti drift to �x neutralaquisitions or deletions at a very low rate. In suh a senario we expet the sameneutral aquisition or deletion to be observed in more than one independently sampledmember of the population very rarely unless the mutation ourred a �long� time ago.If mirobes have very high reombination rates, however, the proess of geneti driftould be substantially aelerated (Novozhilov et al., 2005), and reent aquisitionsould rapidly �invade� the population even if they are neutral or mildly deleterious.Unlike sexual organisms, intraspei� reombination in mirobes is not tied to generationtime, but rather appears to be episodi (REEVES, 1960). Without an upper bound onreombination rate, it may prove di�ult to distinguish alleles whose frequeny in thepopulation has reently inreased due to geneti drift from those under strong positiveseletion.It may be possible to estimate the overall reombination rate in mirobes by in-vestigating patterns of shared novel ontent and deletion mutations in onjuntion withnuleotide substitution data. Given baseline estimates of reombination rates along with(unrealisti) assumptions that the reombination rate is onstant over time and that allportions of the hromosome are uniformly subjet to reombination, it beomes possibleto identify novel aquisitions and deletions that have been subjet to positive seletion.Detailed knowledge of the seletive fores at play during the proess of gene �ux wouldbe a great boon to the �eld of mirobial population genetis and our understanding ofnature as a whole.Finally, we have identi�ed signi�ant amounts of gene �ux in entirely intergenisegments, and disovered an unexpeted orrelation between gene �ux and annotatedmis_RNA features. mis_RNA features are typially small non-oding RNAs that play



148a role in gene regulation. Although it has been previously known that small RNAs arerarely onserved aross speies, the extent of their diversity within speies was heretoforeunappreiated. Further study will undoubtedly shed light on the role gene �ux plays inthe evolution of gene regulation in enteri bateria.



149Chapter 9
Bayesian models of genome evolution
9.1 BakgroundCurrent genome alignment systems make several simplifying assumptions that limit theirvalue for haraterizing rates and patterns of large-sale evolution. Genome aligners typi-ally report the single highest soring genome alignment aording to their soring metriwithout onsidering unertainty in the best-soring alignment. Unertainty in the align-ment a�ets every aspet of downstream analysis of the alignment, from phylogenetishadowing for funtional inferene, to investigation of the breakpoints of reombination.Clearly, unertainty should be onsidered if at all possible.Assessing unertainty in genome alignments requires a more statistially rigoroustreatment of genome alignment than that used by state-of-the-art genome alignmentmethods. Previous studies of unertainty in gapped alignments indiate that analytialalulation of alignment probability is far too expensive even for short alignments of fewtaxa with simple evolutionary models (Miklòs et al., 2004). For this reason, BayesianMCMC methods must be employed. Their slow adoption has been in part due to theomplexity of implementation and in part due to the the omputational ost of samplingmany alignments versus alulating a single highest-soring alignment. However, reentadvanes in Bayesian alignment sampling have demonstrated its feasibility for short



150sequenes (Lunter et al., 2005, Redelings and Suhard, 2005, Suhard and Redelings,2006, Fleissner et al., 2005).We presently desribe a Bayesian model of genome evolution that an be appliedfor analysis of mirobial genomes. The model has not been implemented, however, wedisuss pratial onsiderations for its implementation.9.2 A model of genome evolutionThe �rst step towards development of a statistial method for genome alignment is theeluidation of a stohasti model of evolution whih aptures the most important aspetsof genome evolution. A tradeo� exists in model omplexity, as inreasingly omplexmodels promise to provide more aurate desriptions of the evolutionary proess, butome at the ost of requiring inreasingly large amounts of data for aurate modelparameterization and greater omputational e�ort for inferene. Keeping that tradeo�in mind, I propose a simplisti model of genome evolution that inorporates several ofthe major evolutionary fores we have observed to a�et enteri bateria.At a bare minimum, a probabilisti model of genome evolution must inorporate thefollowing mutation operators: nuleotide substitution, insertion and deletion of arbitrar-ily sized segments, and rearrangement by inversion. To maintain model simpliity, wedo not inorporate rearrangement by transposition or dupliation/loss proesses, as aseries of overlapping inversion events ould produe similar genome arrangements, albeitwith additional rearrangement events. Aquisition and loss of entire genes and operonsan be modeled by the indel proess with arbitrarily long segments. The model assumesa phylogeneti tree relating the genome sequenes, with branh lengths that represent



151divergene times. Our previous observation of signi�ant heterotahy in mutation ratesfor genome rearrangement and gene �ux suggests that eah mutation type should haveper-branh rates. A full list of model parameters is given in Table 16.The proposed model an be viewed as a merge and extension of two previously de-sribed stohasti models of evolution. We inorporate the long-indel model of sequeneevolution used by Bali-Phy (Redelings and Suhard, 2005), extending the model slightlyto separate branh-lengths from mutation rates and allowing indel rates to be indepen-dent of substitution rates. We then inorporate the model of genome rearrangementby inversion desribed by Larget et al. (2004), also allowing inversion events to havebranh-spei� rates.9.2.1 NotationMultiple sequene alignments are typially displayed in row-olumn format with gapharaters spaing the sequenes suh that homologous regions align in olumns. Therow-olumn format mutliple alignment is impreise, however, beause more than onerow-olumn alignment an enode idential homology information, di�ering only in theplaement of gap haraters. We adopt a homology struture based on a partial ordergraph, whih yields an unambiguous means to reord homology infomation (Lee et al.,2002). A genome alignment onsists of several homology strutures�one for eah LoallyCollinear Blok (LCB)�the set of whih are denoted H. In the proposed model the setof LCBs is denoted by Y. To simplify alulation eah LCB is de�ned as an intervalof at least one nuleotide present in all of the k genomes under study. Thus, a givenLCB Yi an be parameterized by its left and right-end oordinates in eah genome:
Yi = {〈Yi.left1, Yi.right1〉, . . . , 〈Yi.leftk, Yi.rightk〉}. All or part of the region overed
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param Parameter Desription prior

G Observed set of genome sequenes �xed
Ψ Tree topology with k leaves uniform
τ A vetor of branh lengths for Ψ τ ∼ Γ(τα, τλ)
τα Branh length gamma distribution hyperparameter �xed
τλ Branh length gamma distribution hyperparameter �xed
Nb Per-branh rates of nuleotide substitution Nb ∼ Γ(Nα, Nλ)
Nα Substitution rate gamma distribution hyperparameter �xed
Nλ Substitution rate gamma distribution hyperparameter �xed
Q Substitution rate matrix �xed
α Gamma-distributed substitution rate heterogeneity shape parameter uniform
Dl Mean indel length uniform(0. . . 100)
Db Per-branh indel rates Db ∼ Γ(Dα,Dλ)
Dx Per-branh indel ounts Dx|Dbτb ∼ Poisson(Dbτb)
Dr Per-branh set of indel sites length(Dr) ∼ Geom(Dl)
Ds Per-branh set of indel event times uniform(0, τb)
Dα Indel rate gamma distribution hyperparameter �xed
Dλ Indel rate gamma distribution hyperparameter �xed
D The set of all indel variables, exluding Dα and Dλ

Ib Per-branh inversion rates Ib ∼ Γ(Iα, Iλ)
Ix Per-branh inversion ounts Ix|Ibτb ∼ Poisson(Ibτb)
Ir Per-branh set of inversion event breakpoints uniform(G)
Is Per-branh set of inversion event times uniform(0, τb)
Iα Inversion rate gamma distribution hyperparameter �xed
Iλ Inversion rate gamma distribution hyperparameter �xed
I The set of all inversion variables, exluding Iα and Iλ

Y The set of loally ollinear bloks (nuisane parameter) uniform
H Set of per-LCB homology strutures uniformTable 16: Parameters for a Bayesian model of genome evolution.



153by the LCB an be homologous among the two sequenes, as ditated by a homologystruture Hi. In this model, every nuleotide in every genome is part of some LCB.In addition to providing a framework for the homology strutures, the LCBs allowthe genome sequenes to be redued to signed permutations for rearrangement historyinferene.Given a set of genome sequenes G = {g1, . . . , gk}, we denote the length of the ithgenome sequene as |gi|.9.3 The posterior distributionWe write the omplete set of model parameters as Θ = {Ψ, τ, Nb, α,D, I,Y,H}, andthe set of �xed data as Ω = {G, Nα, Nλ, Q,Dα, Dλ, Iα, Iλ}. The unnormalized jointposterior distribution of model parameters an be expressed as:
P (Θ|Ω) ∝ P (Ψ)P (Y)P (τ |τα, τλ)P (Nb|Nα, Nλ) ·

P (Db|Dα, Dλ)P (Dl)P (Dx|Dbτ)P (Dr|Dx, Dl)P (Ds|τ,Dx) ·

P (Ib|Iα, Iλ)P (Ix|Ibτ)P (Ir|Ix)P (Is|τ, Ix) ·

P (H|G, τ, Q,Nb)P (Y|I)P (H|D)P (G|HY)where
P (Ψ) =

1

(2k − 5)!!when k > 2 (more than two genomes). The number of possible LCB on�gurations,denoted Y# an be expressed as
Y# =

n
∑

i=1

(i!2i)k−1

k
∏

j=1

(

|gj| − 1

i− 1

) (9.1)



154where n is the length of the shortest genome. Thus, we an write P (Y) = 1
Y #

. Intu-itively, we an think of Y# as ounting all possible LCB strutures among the genomes.The sum term aounts for the fat that there are anywhere between 1 and n ollinearsegments in eah genome, and the seond (produt) term onsiders all possible ways theollinear segments ould be ombined aross genomes into LCBs.The onditional probabilities for I follow from (Larget et al., 2004). Brie�y, wede�ne a set of per-branh inversion rates Ib oming from a gamma distribution withshape parameter Iα and sale parameter Iλ. Ib is a vetor with 2k − 3 elements, thenumber of edges in the tree. We then de�ne a total per-branh ount of inversions Ixwhih is Poisson distributed with per-branh intensities equal to Ibτ , i.e. the produt ofinversion rate and branh time. We go on to de�ne Ir as the atual inversion events thattook plae along eah branh, and we de�ne a set of per-branh inversion event times
Is, whih are uniformly distributed along the branh (whih has Ix events and τ unitsof time).The onditional probabilities for D are similar to those for I, but inlude some biastowards partiular indel sizes, whereas our prior on inversion events treats all events asequally likely. Again we de�ne Db as a per-branh mutation rate for indels, gamma-distributed with shape and sale Dα and Dλ, respetively. We sample a per-branhount of indel events, whih is Poisson distributed with per-branh intensities equal to
Dbτ . Dr represents the atual indel events taking plae along eah branh, and Dsare the orresponding event times uniformly distributed along the branh. The term
P (Dr|Dx, Dl) re�ets the probability of observing a series of Dx indel events given thatindel lengths are distributed aording to a geometri distribution with mean Dl. P (Dl)is the prior probability of a given mean indel length, whih we take to be uniformly



155distributed between 0 and 100.The term P (H|G, τ, Q,Nb) alulates the probability of the homology struture giventhe genome sequenes. The probability of the homology struture depends on the prob-ability of the nuleotide substitution events among members of G implied by the homol-ogy struture. Substitution probabilities an be alulated using Felsenstein's peelingalgorithm (Felsenstein, 2004).The �nal three terms in the unnormalized posterior are indiator terms whose prob-ability is 1 if the proposed strutures are onsistent with the data. Spei�ally, we writethese as:
P (Y|I) = 1{(Ψ,Ix,Ir)→֒Y}

P (H|D) =

|H|
∏

i=1

1{(Ψ,Dx,Dr)→֒Hi}

P (G|H,Y) = 1{(Y,H)→֒G}Where P (Y|I) indiates whether the proposed rearrangement events are onsistentwith the proposed LCB struture Y. The term P (H|D) indiates whether the proposedindel events are onsistent with the proposed homology struture. Finally, the term
P (G|H,Y) has value 1 when the genome sequene data is onsistent with the proposedhomology struture and LCB struture.Inferene under the modelThe marginal probability distribution of model variables provides a basis for biologialinsight. For example, a probability distribution over the breakpoints of rearrangementenoded by Ir an identify likely positions on the hromosome where a rearrangement



156event was initiated. By studying the sequene motif at that site, it may be possible toinfer whether the rearrangement event was mediated by homologous reombination, anIS or transposable element, or illegitimate reombination. The probability distributionover homology strutures an inform us whih regions are likely to have been onservedthroughout evolution, and also plaes a distribution over endpoints of gene aquisitionand di�erential gene loss. We an then investigate the surrounding sequene for evideneof phage involvement or other reombination mehanisms.9.3.1 Sampling from the modelDue to the omplexity of the model, diret analytial alulation of marginal probabilitiesfor eah variable is not possible. Instead, it will be neessary to sample likely values foreah of the above listed variables using Markov-hain Monte-Carlo. Towards this end,the sampling methodology and model for rearrangement events follows the lead of Largetet al. (2002) whereby inversions were spei�ed by an event ount per branh (Ix) withevent times given by a Poisson proess (Is). At proposal steps requiring modi�ation ofthe rearrangement senario, a method similar to Larget et al. (2004) would be used topropose a plausible rearrangement senario. Their method proposes an inversion thatredues the overall inversion distane with high probability, and with low probability,proposes inversions that either maintain the same inversion distane or inrease thedistane. It is likely that use of a parallel Metropolis-oupled sampling strategy wouldbe neessary to improve mixing speed.Given an alignment and a phylogeneti tree, it is possible to quikly alulate theminimum number of indel events that ould give rise to the observed alignment. Thusthe indel events an be parameterized in a manner similar to rearrangements, namely by



157having per-branh parameters for the atual series of events, their times, and an eventount whose prior is biased by the minimum possible number of events. We an thensample indel events as rearrangements are sampled; spei�ally, indels that redue thetotal number of remaining events required to explain the homology struture are sampledwith high probability. Indels that leave the number of remaining events onstant aresampled with small probability while other indel events are sampled with an even smallerprobability.Beause genome sequenes an be several megabases in length, the alignment sam-pling method must use anhored alignment tehniques. With some high probability,the sampler proposes a set of anhors and LCBs (Y) onsistent with the high soringloal alignments. LCBs inonsistent with the set of high soring loal alignments shouldbe proposed with lower probability. Among the high probability anhor proposals, itmay be possible to bias the proposal distribution toward LCB on�gurations with fewerrearrangement breakpoints.Given a set of LCBs (Y) and alignment anhors, an alignment an be proposed byombining the traditional dynami programming approah for anhored alignment witha stohasti traebak step. In stohasti traebak, rather than seleting the highestsoring path at eah step of the traebak proedure, a path is hosen randomly withprobability proportional to its sore. Lunter et al. (2005) desribes how to alulate pro-posal probabilities for standard alignment, and we antiipate extending the methodologyto anhored alignment. Bali-Phy uses a slightly di�erent mehanism to propose newalignments among taxa whih appears to o�er better mixing (Redelings and Suhard,2005). Thus, if their approah an be ombined with an anhoring strategy it may bepreferable.



158The MCMC sampler moves through a series of states X = x0,x1, . . . ,xn, eah ofwhih is represented by a partiular set of parameter values. Transitions between statesare ahieved by a set of proposal update mehansisms. The quality of proposal updatesis ritial to ahieving high aeptane ratios and good mixing behavior for the Markovhain. The sampler uses the following proposal update mehanisms:1. Update tree topology (using mehanisms suh as NNI and TBR)2. Update a pair of breakpoint positions for a sequene subjet to existing anhoronstraints (realulate alignment in new regions)3. Sample a new anhor for a position in a sequene (update rearrangement senario)4. Disable an anhor (possibly update rearrangement senario)5. Disable an entire LCB6. Sample a new rearrangement senario7. Sample a new indel senario8. Resample part of the alignmentThe �rst proposal mehanism, an update to the tree topology, requires a orrespond-ing update of rearrangement senarios and indel events, although the homology strutureis invariant. The seond proposal mehanism would require hanges to the homologystruture and possibly indel events, although the LCB struture and rearrangementevents ould remain invariant. Finally, resampling the alignment would also require or-responding updates to the indel senarios. Future work to derive Metropolis-Hastings



159aeptane ratios for eah proposal type will be required before any of these proposalmehanisms an be implemented in software.9.4 DisussionThe proposed model takes an intentionally simpli�ed view of the fores at play duringgenome evolution. The model ignores rearrangement mediated by transposition, blokinterhange, and dupliation-loss proesses. The model does not inlude segmental du-pliation, whih we feel is an aeptable simpli�ation when modeling baterial genomesthat appear to have strong seletive pressure to maintain small genome size.Perhaps more importantly, the model does not inlude any notion of lateral transferamong population members. Isolates of enteri bateria have provided strong evidenefor homologous reombination's role in exhanging geneti material among members ofa population. When suh reombination takes plae, a single tree topology no longerrepresents the true history of the genomes under study. Thus, the proposed model mayhave serious shortomings in its representation of population-level evolution. However,ross-speies reombination has been demonstrated to be muh rarer than intraspei�reombination (Beiko et al., 2005, Mau et al., 2006). Therefore it seems plausible thatthe model ould be applied to a set of genomes so long as no two genomes are membersof the same speies (i.e. little homologous reombination has taken plae).Although other work has used a single likelihood alulation for the probability ofa tree given both indels and nuleotide substitutions in a TKF91 model, the methodan only aomodate single nuleotide indels. Beause larger indels obviously our weonsider our model more realisti. Our more realisti model omes at the expense of



160sampling full indel histories for the genomes under study. It remains to be seen whetherthe approah is omputationally tratable.



161Appendix A
Palindromi seed patterns
Weight Pattern Seed Rank by Sequene Identity65% 70% 75% 80% 85% 90%5 1**111**1 2 2 2 2 2 76 11**1*1**11 2 2 2 2 2 37 1*11***1***11*1 2 2 2 2 2 28 111**1*1**111 2 2 2 2 2 29 111**1**1**1**111 3 2 2 2 2 210 111*1**1**1**1*111 5 3 2 2 2 211 111*1*1**1**1*1*111 3 2 2 2 2 212 1111*1**11**1*1111 1 1 3 3 2 313 111*1*11**1**11*1*111 2 1 2 2 2 214 1111*1*11**11*1*1111 1 1 2 2 2 215 1111*11**1*1*1**11*1111 3 2 2 2 3 416 111*111**1*11*1**111*111 5 4 2 2 2 218 11111*1*11**11**11*1*11111 2 2 2 2 2 219 11111*1*11**111**11*1*11111 6 4 2 3 4 620 11111*11*111**111*11*11111 1 1 8 > 10 > 10 > 1021 111111**11*1*111*1*11**111111 > 10 3 2 1 1 1Table 17: Seond-most sensitive palindromi spaed seeds used by prorastAligner.The sensitivity ranking of a seed at various levels of sequene identity is given in theolumns at right. A seed with rank 1 is the most sensitive seed pattern for a given weightand perent sequene identity. The default seeds used by prorastAligner are listedin Chapter 3, while these seeds are the seond-most sensitive set of optional seeds.
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Weight Pattern Seed Rank by Sequene Identity65% 70% 75% 80% 85% 90%5 11**1**11 3 3 3 3 3 26 11*1*1*11 3 3 3 3 3 17 11*1***1***1*11 3 3 3 3 3 38 11**1*1*1*1**11 4 4 3 4 4 49 111**1*1*1**111 2 3 3 3 3 310 111*1**11**1*111 2 2 3 3 3 311 111**1**1*1*1**1**111 9 6 3 3 3 312 111*11*1***1*11*111 3 2 2 2 3 613 111*1**11*1*11**1*111 5 3 4 3 4 614 1111*1*1**11**1*1*1111 4 4 3 3 4 515 1111**11*1*1*1*11**1111 5 3 3 3 2 216 11111**11*1*1*11**11111 4 3 4 3 3 418 1111*11**11*1*1*11**11*1111 > 10 6 3 3 3 319 1111*11*111*1*111*11*1111 1 1 4 10 > 10 > 1020 11111*1*111**11**111*1*11111 > 10 > 10 1 2 3 321 111111*1*11*111*11*1*111111 3 2 4 10 > 10 7Table 18: Third-most sensitive palindromi spaed seeds used by prorastAligner.The sensitivity ranking of a seed at various levels of sequene identity is given in theolumns at right. A seed with rank 1 is the most sensitive seed pattern for a given weightand perent sequene identity. The default seeds used by prorastAligner are listedin Chapter 3, while these seeds are the third-most sensitive set of optional seeds.



163Appendix B
Desription of the Mauve Multi-MUMsearh algorithm
The multi-MUM searh algorithm desribed herein is a seed-and-extend method basedon the method that an identify both multi-MUMs ourring in all genomes under studyin addition to those ourring only in subsets of the genomes being searhed. The multi-MUM searh algorithm has time omplexity O(G2n+Gn logGn) where G is again thenumber of genomes and n the length of the longest genome. Further, the random-aess memory requirements are proportional to the number of multi-MUMs found, not
n, allowing it to e�iently takle large data sets. O(Gn) disk spae is used to storesequentially aessed data strutures.The algorithm proeeds by onstruting a sorted list of k-mers for eah genome g ∈ G.The sorted k-mer lists are then sanned to identify kmers that our in two or moresequenes but that our at most one in any sequene. If a multi-MUM that subsumesthe k-mer math has not yet been disovered, then the math seeds an extension in eahgenome until a mismath ours. When a mismath ours an extension is seeded in thesubset of sequenes that are still idential, but only if a subsuming multi-MUM has notyet been disovered.Given a math seed, a key feature of our algorithm is its ability to e�iently determine



164whether an existing multi-MUM subsumes the seed. Mauve uses a hash table to trakknown mathes. The hash funtion h(M) for a math M yields a quantity we refer toas the generalized o�set of a math M . Using the notation of multi-MUMs introduedin the primary manusript, h(M) an be written as h(M) =
∑G

j=1 |M.Sj . . .M.S1|. Inorder to mitigate the e�ets of potential hash ollisions, eah buket of the hash tableuses a binary searh tree to store mathes.For the purposes of time omplexity analysis, the mathing algorithm an be de-onstruted into four primary omponents: Sorted Mer List (SML) onstrution, seedmath identi�ation, seed lookup in the known math hash table, and seed extension.SML onstrution an be aomplished in O(Gn) (linear) time using radix sort meth-ods. Identifying seed mathes from the Sorted Mer Lists requires a single sequentialsan through eah SML and is thus also O(Gn). The seed lookup phase an be exe-uted at most one for every multi-MUM seed. Beause there are Gn mers, the largestpossible number of unique mer-mathes is Gn
2
. If all of these mer-mathes were to hashto the same buket then a tree searh and insertion would be required for every seedmath. Using a splay tree (Sleator and Tarjan, 1985), the amortized time omplexityfor Gn tree lookups and insertions is O(Gn logGn). The amount of math extensiondepends on the number and size of multi-MUMs identi�ed. Beause we are identifyingMUMs, eah nuleotide an be a part of at most 2 MUMs on the forward strand and 2MUMs on the reverse strand, for a total of 4 MUMs. Furthermore, it holds that any 2nuleotide an be a part of at most 4 multi-MUMs with a given multipliity. Thus eahnuleotide an be a part of 4G multi-MUMs, or just O(G) multi-MUMs. For a givenmultipliity m, the largest possible amount of extension work depends on the maximumpossible number of mathing mers at that multipliity: Gn

m
. Further, eah extension at a



165partiular multipliity m requires m harater omparisons. Thus the maximum numberof harater omparisons for a given multipliity is mGn
m

or just Gn, and sine there are
G multipliity levels, the maximum number of omparisons to �nd all multi-MUMs is
G2n.By adding the ontributions eah of the algorithm�s four omponents make towardthe total running time, we arrive at Gn+Gn+Gn logGn+G2n. In asymptoti notation,the Gn terms are subsumed by G2n, leaving O(G2n+Gn logGn). It is important to notethat although su�x tree algorithms provide better asymptoti time omplexity than ourseed-and-extend method, in pratie our implementation is very fast and spae e�ient.Furthermore, the seed mathing tehnique an be easily modi�ed to use weighted/spaedseeds, allowing inexat string mathing not possible with su�x tree-like data struturesin the same low asymptoti time omplexity.



166Appendix C
Partitioning mathes into ollinearsubsets
As part of the anhor seletion proess, Mauve must partition the initial set of multi-MUMs M into ollinear subsets. To do so, Mauve implements a breakpoint analysisalgorithm based on the desription of breakpoints given by Blanhette et al. (1997). Werefer to the resulting ollinear sets of multi-MUMs as LCBs. An LCB an be de�nedformally as a maximal ollinear subset of the mathes in M, or lcb ⊆ M where Mi isthe ith multi-MUM in the LCB. The MUMs that onstitute an LCB must satisfy a totalordering property suh that Mi.Sj ≤ Mi+1.Sj holds for all i, 1 ≤ i ≤ |lcb| and all j,
1 ≤ j ≤ G.Mauve uses a standard breakpoint determination algorithm to partition the set ofmulti-MUMs into a set of LCBs. First, Mauve orders the multi-MUMs inM on |Mi.S0|.Next, a monotonially inreasing label between 1 and |M | is assigned to eah MUMorresponding to the index of the MUM in the ordering on |Mi.S0|. We will refer to thelabel of the ith multi-MUM as Mi.label. Note that Mi.label ∈ N. Next, the set of multi-MUMs is repeatedly reordered based on |Mi.Sj| for j = 2 . . . G. After eah reordering,the set of multi-MUMs are examined for breakpoints. A breakpoint exists between
Mi and Mi+1 if Mi.label + 1 6= Mi+1.label and both Mi and Mi+1 are in the forward



167orientation, or if Mi.label − 1 6= Mi+1.label and both Mi and Mi+1 are in the reverseomplement orientation. A breakpoint also exists if Mi is in a di�erent orientation than
Mi+1 in sequene j, e.g. the sign of Mi.Sj is di�erent than the sign of Mi+1.Sj . Finally,the multi-MUMs are re-ordered on M.label and the LCBs are then any maximal lengthsubsequene of multi-MUMsMi . . .Mi+j that does not ontain any reorded breakpointsbetween multi-MUMs.
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